利用毫米波无线局域网的定期流量源的预定访问特性

Mattia Lecci, Matteo Drago, A. Zanella, M. Zorzi
{"title":"利用毫米波无线局域网的定期流量源的预定访问特性","authors":"Mattia Lecci, Matteo Drago, A. Zanella, M. Zorzi","doi":"10.1109/MedComNet52149.2021.9501236","DOIUrl":null,"url":null,"abstract":"Many current and future multimedia and industrial applications, like video streaming, eXtended Reality or remote robot control, are characterized by periodic data transmissions with strict latency and reliability constraints. In an effort to meet the stringent demand of such traffic sources, the WiGig standards support a contention-free channel access mechanism, named Service Period, that makes it possible to allocate dedicated time intervals to certain wireless stations. However, the standard only covers the fundamental aspects that ensure interoperability, while the actual schedule logic is left to vendors. In this paper, we propose two algorithms for joint admission control and scheduling of periodic traffic streams with contrasting performance objectives, specifically a simple scheduler and a max-min fair scheduler. The schemes are compared in two different scenarios, in order to characterize and highlight some fundamental trade-offs. As expected from their design principles, the simple scheduler tends to accept more homogeneous resource allocation requests, while the max-min scheduler can efficiently handle more diversified requests, at the cost of a small loss in terms of total resource utilization.","PeriodicalId":272937,"journal":{"name":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploiting Scheduled Access Features of mmWave WLANs for Periodic Traffic Sources\",\"authors\":\"Mattia Lecci, Matteo Drago, A. Zanella, M. Zorzi\",\"doi\":\"10.1109/MedComNet52149.2021.9501236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many current and future multimedia and industrial applications, like video streaming, eXtended Reality or remote robot control, are characterized by periodic data transmissions with strict latency and reliability constraints. In an effort to meet the stringent demand of such traffic sources, the WiGig standards support a contention-free channel access mechanism, named Service Period, that makes it possible to allocate dedicated time intervals to certain wireless stations. However, the standard only covers the fundamental aspects that ensure interoperability, while the actual schedule logic is left to vendors. In this paper, we propose two algorithms for joint admission control and scheduling of periodic traffic streams with contrasting performance objectives, specifically a simple scheduler and a max-min fair scheduler. The schemes are compared in two different scenarios, in order to characterize and highlight some fundamental trade-offs. As expected from their design principles, the simple scheduler tends to accept more homogeneous resource allocation requests, while the max-min scheduler can efficiently handle more diversified requests, at the cost of a small loss in terms of total resource utilization.\",\"PeriodicalId\":272937,\"journal\":{\"name\":\"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MedComNet52149.2021.9501236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MedComNet52149.2021.9501236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多当前和未来的多媒体和工业应用,如视频流,扩展现实或远程机器人控制,其特点是具有严格延迟和可靠性限制的周期性数据传输。为了满足这些通信源的严格要求,WiGig标准支持一种无争用的信道访问机制,称为服务周期,这使得为某些无线电台分配专用的时间间隔成为可能。然而,该标准只涵盖了确保互操作性的基本方面,而实际的调度逻辑留给了供应商。在本文中,我们提出了两种具有不同性能目标的周期性流量流联合准入控制和调度算法,即简单调度算法和最大最小公平调度算法。在两种不同的情况下对这些方案进行比较,以便描述和突出一些基本的权衡。正如其设计原则所期望的那样,简单调度器倾向于接受更均匀的资源分配请求,而最大最小调度器可以有效地处理更多样化的请求,其代价是在总资源利用率方面损失很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Scheduled Access Features of mmWave WLANs for Periodic Traffic Sources
Many current and future multimedia and industrial applications, like video streaming, eXtended Reality or remote robot control, are characterized by periodic data transmissions with strict latency and reliability constraints. In an effort to meet the stringent demand of such traffic sources, the WiGig standards support a contention-free channel access mechanism, named Service Period, that makes it possible to allocate dedicated time intervals to certain wireless stations. However, the standard only covers the fundamental aspects that ensure interoperability, while the actual schedule logic is left to vendors. In this paper, we propose two algorithms for joint admission control and scheduling of periodic traffic streams with contrasting performance objectives, specifically a simple scheduler and a max-min fair scheduler. The schemes are compared in two different scenarios, in order to characterize and highlight some fundamental trade-offs. As expected from their design principles, the simple scheduler tends to accept more homogeneous resource allocation requests, while the max-min scheduler can efficiently handle more diversified requests, at the cost of a small loss in terms of total resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From PLATO to Platoons Reputation-Based Spectrum Data Fusion against Falsification Attacks in Cognitive Networks Passive Device-Free Multi-Point CSI Localization and Its Obfuscation with Randomized Filtering Combined Spatial Division Multiplexing and Spatial Reuse across Decentral Wireless LANs Geolocation-based Sector Selection for Vehicle-to-Infrastructure 802.11ad Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1