利用过采样和不规则插值对抗图像编码中的丢包

Mor Goren, R. Zamir
{"title":"利用过采样和不规则插值对抗图像编码中的丢包","authors":"Mor Goren, R. Zamir","doi":"10.1109/ICSEE.2018.8646292","DOIUrl":null,"url":null,"abstract":"Diversity “multiple description” (MD) source coding promises graceful degradation in the presence of an unknown number of erasures in the channel. A simple solution in the case of two descriptions consists of oversampling the source by a factor of two and delta-sigma quantization. This approach was applied successfully to JPEG-based image coding over a lossy packet network, where the interpolation into two packets is done in the discrete cosine transform (DCT) domain. The extension to a larger number of descriptions, however, suffers from noise amplification whenever the received descriptions do not form a uniform sampling pattern. In this work we show how noise amplification can be reduced by optimizing the interpolation filter. We propose two interpolation methods which, for a given total coding rate, minimize the average distortion over all (K out of N) patterns of received packets. We provide simulation results comparing low pass and irregular interpolation filters, and discuss the advantage of each method.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combating Packet Loss in Image Coding using Oversampling and Irregular Interpolation\",\"authors\":\"Mor Goren, R. Zamir\",\"doi\":\"10.1109/ICSEE.2018.8646292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diversity “multiple description” (MD) source coding promises graceful degradation in the presence of an unknown number of erasures in the channel. A simple solution in the case of two descriptions consists of oversampling the source by a factor of two and delta-sigma quantization. This approach was applied successfully to JPEG-based image coding over a lossy packet network, where the interpolation into two packets is done in the discrete cosine transform (DCT) domain. The extension to a larger number of descriptions, however, suffers from noise amplification whenever the received descriptions do not form a uniform sampling pattern. In this work we show how noise amplification can be reduced by optimizing the interpolation filter. We propose two interpolation methods which, for a given total coding rate, minimize the average distortion over all (K out of N) patterns of received packets. We provide simulation results comparing low pass and irregular interpolation filters, and discuss the advantage of each method.\",\"PeriodicalId\":254455,\"journal\":{\"name\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEE.2018.8646292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分集“多重描述”(MD)源编码在信道中存在未知数量的擦除时保证了优雅的降级。在两个描述的情况下,一个简单的解决方案是对源进行2倍的过采样和delta-sigma量化。该方法成功地应用于有损数据包网络上基于jpeg的图像编码,其中在离散余弦变换(DCT)域中对两个数据包进行插值。然而,每当接收到的描述不形成均匀的采样模式时,对大量描述的扩展就会受到噪声放大的影响。在这项工作中,我们展示了如何通过优化插值滤波器来减少噪声放大。我们提出了两种插值方法,对于给定的总编码率,最小化接收数据包的所有(K / N)模式的平均失真。我们给出了低通和不规则插值滤波器的仿真结果,并讨论了每种方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combating Packet Loss in Image Coding using Oversampling and Irregular Interpolation
Diversity “multiple description” (MD) source coding promises graceful degradation in the presence of an unknown number of erasures in the channel. A simple solution in the case of two descriptions consists of oversampling the source by a factor of two and delta-sigma quantization. This approach was applied successfully to JPEG-based image coding over a lossy packet network, where the interpolation into two packets is done in the discrete cosine transform (DCT) domain. The extension to a larger number of descriptions, however, suffers from noise amplification whenever the received descriptions do not form a uniform sampling pattern. In this work we show how noise amplification can be reduced by optimizing the interpolation filter. We propose two interpolation methods which, for a given total coding rate, minimize the average distortion over all (K out of N) patterns of received packets. We provide simulation results comparing low pass and irregular interpolation filters, and discuss the advantage of each method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Motion Compensation for Forensic Analysis of Egocentric Video using Joint Stabilization and Tracking DC low current Hall effect measurements Examining Change Detection Methods For Hyperspectral Data Effect of Reverberation in Speech-based Emotion Recognition Traveling-Wave Ring Oscillator – Simulations and Prototype Measurements for a New Architecture for a Transmission Line Based Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1