在时频域结合ICA和VD-CDWT的真实世界源分离

Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura
{"title":"在时频域结合ICA和VD-CDWT的真实世界源分离","authors":"Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura","doi":"10.1109/ICWAPR.2009.5207450","DOIUrl":null,"url":null,"abstract":"It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"162 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real world source separation by combining ICA and VD-CDWT in time-frequency domain\",\"authors\":\"Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura\",\"doi\":\"10.1109/ICWAPR.2009.5207450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"162 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,在现实世界的声源分离中,必须考虑复杂混响声和各种噪声的环境噪声去除。为了提高现实世界中语音分离的识别精度,提出了一种基于变密度复离散小波变换(VD-CDWT)和子空间方法的时频独立分量分析(ICA)方法。根据信噪比(SNR)对结果进行比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real world source separation by combining ICA and VD-CDWT in time-frequency domain
It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1