{"title":"复杂通信场景下的排控算法评估平台","authors":"Sijie Zhu, Dip Goswami, Hong Li","doi":"10.1109/VTCSpring.2019.8746477","DOIUrl":null,"url":null,"abstract":"Cooperative Adaptive Cruise Control (CACC) extends the Adaptive Cruise Control technology with additional information exchange between vehicles over vehicle-to-everything (V2X) communications in an ad-hoc network at 5.9 GHz band (ITS-G5) in Europe. Using beyond line-of-sight information provided by V2X, the platoon control algorithms realize a shorter safe inter-vehicle distance. Nevertheless, the platoon performance (e.g., the allowable inter-vehicle distance) may be impacted by the imperfectness of wireless communications. Specifically, in congested traffic scenarios, a Decentralized Congestion Control method that regulates message rate based on congestion level (Transmit Rate Control (TRC)), may significantly reduce the platoon performance. In this work, we propose an evaluation platform for platoon control algorithms based on industrial V2X nodes operating in the ITS-G5 channels. The real car is simulated by a longitudinal vehicle dynamic model. The model-in-the-loop test results demonstrate that the performance of CACC goes down significantly when the message rate is restricted and reduced by TRC. Our evaluation results further conclude that the effect of such complex communication scenarios imposed by the existing standards should be explicitly modelled in the future platoon control algorithms.","PeriodicalId":134773,"journal":{"name":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation Platform of Platoon Control Algorithms in Complex Communication Scenarios\",\"authors\":\"Sijie Zhu, Dip Goswami, Hong Li\",\"doi\":\"10.1109/VTCSpring.2019.8746477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative Adaptive Cruise Control (CACC) extends the Adaptive Cruise Control technology with additional information exchange between vehicles over vehicle-to-everything (V2X) communications in an ad-hoc network at 5.9 GHz band (ITS-G5) in Europe. Using beyond line-of-sight information provided by V2X, the platoon control algorithms realize a shorter safe inter-vehicle distance. Nevertheless, the platoon performance (e.g., the allowable inter-vehicle distance) may be impacted by the imperfectness of wireless communications. Specifically, in congested traffic scenarios, a Decentralized Congestion Control method that regulates message rate based on congestion level (Transmit Rate Control (TRC)), may significantly reduce the platoon performance. In this work, we propose an evaluation platform for platoon control algorithms based on industrial V2X nodes operating in the ITS-G5 channels. The real car is simulated by a longitudinal vehicle dynamic model. The model-in-the-loop test results demonstrate that the performance of CACC goes down significantly when the message rate is restricted and reduced by TRC. Our evaluation results further conclude that the effect of such complex communication scenarios imposed by the existing standards should be explicitly modelled in the future platoon control algorithms.\",\"PeriodicalId\":134773,\"journal\":{\"name\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCSpring.2019.8746477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCSpring.2019.8746477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation Platform of Platoon Control Algorithms in Complex Communication Scenarios
Cooperative Adaptive Cruise Control (CACC) extends the Adaptive Cruise Control technology with additional information exchange between vehicles over vehicle-to-everything (V2X) communications in an ad-hoc network at 5.9 GHz band (ITS-G5) in Europe. Using beyond line-of-sight information provided by V2X, the platoon control algorithms realize a shorter safe inter-vehicle distance. Nevertheless, the platoon performance (e.g., the allowable inter-vehicle distance) may be impacted by the imperfectness of wireless communications. Specifically, in congested traffic scenarios, a Decentralized Congestion Control method that regulates message rate based on congestion level (Transmit Rate Control (TRC)), may significantly reduce the platoon performance. In this work, we propose an evaluation platform for platoon control algorithms based on industrial V2X nodes operating in the ITS-G5 channels. The real car is simulated by a longitudinal vehicle dynamic model. The model-in-the-loop test results demonstrate that the performance of CACC goes down significantly when the message rate is restricted and reduced by TRC. Our evaluation results further conclude that the effect of such complex communication scenarios imposed by the existing standards should be explicitly modelled in the future platoon control algorithms.