血液透析时间序列分类的新型深度学习架构

G. Leonardi, S. Montani, Manuel Striani
{"title":"血液透析时间序列分类的新型深度学习架构","authors":"G. Leonardi, S. Montani, Manuel Striani","doi":"10.3233/kes220010","DOIUrl":null,"url":null,"abstract":"Classifying haemodialysis sessions, on the basis of the evolution of specific clinical variables over time, allows the physician to identify patients that are being treated inefficiently, and that may need additional monitoring or corrective interventions. In this paper, we propose a deep learning approach to clinical time series classification, in the haemodialysis domain. In particular, we have defined two novel architectures, able to take advantage of the strengths of Convolutional Neural Networks and of Recurrent Networks. The novel architectures we introduced and tested outperformed classical mathematical classification techniques, as well as simpler deep learning approaches. In particular, combining Recurrent Networks with convolutional structures in different ways, allowed us to obtain accuracies above 81%, coupled with high values of the Matthews Correlation Coefficient (MCC), a parameter particularly suitable to assess the quality of classification when dealing with unbalanced classes-as it was our case. In the future we will test an extension of the approach to additional monitoring time series, aiming at an overall optimization of patient care.","PeriodicalId":210048,"journal":{"name":"Int. J. Knowl. Based Intell. Eng. Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel deep learning architectures for haemodialysis time series classification\",\"authors\":\"G. Leonardi, S. Montani, Manuel Striani\",\"doi\":\"10.3233/kes220010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying haemodialysis sessions, on the basis of the evolution of specific clinical variables over time, allows the physician to identify patients that are being treated inefficiently, and that may need additional monitoring or corrective interventions. In this paper, we propose a deep learning approach to clinical time series classification, in the haemodialysis domain. In particular, we have defined two novel architectures, able to take advantage of the strengths of Convolutional Neural Networks and of Recurrent Networks. The novel architectures we introduced and tested outperformed classical mathematical classification techniques, as well as simpler deep learning approaches. In particular, combining Recurrent Networks with convolutional structures in different ways, allowed us to obtain accuracies above 81%, coupled with high values of the Matthews Correlation Coefficient (MCC), a parameter particularly suitable to assess the quality of classification when dealing with unbalanced classes-as it was our case. In the future we will test an extension of the approach to additional monitoring time series, aiming at an overall optimization of patient care.\",\"PeriodicalId\":210048,\"journal\":{\"name\":\"Int. J. Knowl. Based Intell. Eng. Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Based Intell. Eng. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/kes220010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Based Intell. Eng. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes220010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据特定临床变量随时间的变化对血液透析疗程进行分类,使医生能够识别治疗无效的患者,并且可能需要额外的监测或纠正干预。在本文中,我们提出了一种深度学习方法,用于血液透析领域的临床时间序列分类。特别是,我们定义了两种新的架构,能够利用卷积神经网络和循环网络的优势。我们介绍和测试的新架构优于经典的数学分类技术,以及更简单的深度学习方法。特别是,以不同的方式将循环网络与卷积结构相结合,使我们能够获得81%以上的准确率,再加上Matthews相关系数(MCC)的高值,这是一个特别适合在处理不平衡类时评估分类质量的参数-就像我们的情况一样。在未来,我们将测试将该方法扩展到其他监测时间序列,旨在对患者护理进行全面优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel deep learning architectures for haemodialysis time series classification
Classifying haemodialysis sessions, on the basis of the evolution of specific clinical variables over time, allows the physician to identify patients that are being treated inefficiently, and that may need additional monitoring or corrective interventions. In this paper, we propose a deep learning approach to clinical time series classification, in the haemodialysis domain. In particular, we have defined two novel architectures, able to take advantage of the strengths of Convolutional Neural Networks and of Recurrent Networks. The novel architectures we introduced and tested outperformed classical mathematical classification techniques, as well as simpler deep learning approaches. In particular, combining Recurrent Networks with convolutional structures in different ways, allowed us to obtain accuracies above 81%, coupled with high values of the Matthews Correlation Coefficient (MCC), a parameter particularly suitable to assess the quality of classification when dealing with unbalanced classes-as it was our case. In the future we will test an extension of the approach to additional monitoring time series, aiming at an overall optimization of patient care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DICO: Dingo coot optimization-based ZF net for pansharpening Hybrid modified weighted water cycle algorithm and Deep Analytic Network for forecasting and trend detection of forex market indices Autonomous gesture recognition using multi-layer LSTM networks and laban movement analysis KinRob: An ontology based robot for solving kinematic problems Machine learning approach for corona virus disease extrapolation: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1