基于多分类器的人脸特征年龄预测

F. Mohamad, M. Iqtait, F. Alsuhimat
{"title":"基于多分类器的人脸特征年龄预测","authors":"F. Mohamad, M. Iqtait, F. Alsuhimat","doi":"10.1109/CATA.2018.8398675","DOIUrl":null,"url":null,"abstract":"Human age recognition becomes increasingly important due to its beneficial employments alongside security and computer applications. Age prediction from face picture has a lot of challenges, such as insufficiency of training data and uncontrollable situation. In this research, we address these critical issues by introducing an improved age prediction algorithm using Active Appearance Models (AAM) and three classifiers, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Support Vector Regression (SVR) to improve the precision of age prediction based on the present methods. In this algorithm, the traits of the facial pictures are explicated as traits vectors by AAM model, and the classifiers are utilized to estimate the age. We were able to recognize that the accuracy of SVR algorithm is better than the accuracy of KNN and SVM classifiers.","PeriodicalId":231024,"journal":{"name":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Age prediction on face features via multiple classifiers\",\"authors\":\"F. Mohamad, M. Iqtait, F. Alsuhimat\",\"doi\":\"10.1109/CATA.2018.8398675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human age recognition becomes increasingly important due to its beneficial employments alongside security and computer applications. Age prediction from face picture has a lot of challenges, such as insufficiency of training data and uncontrollable situation. In this research, we address these critical issues by introducing an improved age prediction algorithm using Active Appearance Models (AAM) and three classifiers, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Support Vector Regression (SVR) to improve the precision of age prediction based on the present methods. In this algorithm, the traits of the facial pictures are explicated as traits vectors by AAM model, and the classifiers are utilized to estimate the age. We were able to recognize that the accuracy of SVR algorithm is better than the accuracy of KNN and SVM classifiers.\",\"PeriodicalId\":231024,\"journal\":{\"name\":\"2018 4th International Conference on Computer and Technology Applications (ICCTA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Computer and Technology Applications (ICCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CATA.2018.8398675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATA.2018.8398675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类的年龄识别变得越来越重要,因为它与安全和计算机应用一起有益的就业。人脸图像年龄预测存在训练数据不足、情况不可控等问题。在本研究中,我们通过引入一种改进的年龄预测算法来解决这些关键问题,该算法使用主动外观模型(AAM)和支持向量机(SVM)、k -最近邻(KNN)和支持向量回归(SVR)三种分类器来提高年龄预测的精度。该算法通过AAM模型将人脸图像的特征表示为特征向量,并利用分类器进行年龄估计。我们可以认识到,SVR算法的准确率优于KNN和SVM分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age prediction on face features via multiple classifiers
Human age recognition becomes increasingly important due to its beneficial employments alongside security and computer applications. Age prediction from face picture has a lot of challenges, such as insufficiency of training data and uncontrollable situation. In this research, we address these critical issues by introducing an improved age prediction algorithm using Active Appearance Models (AAM) and three classifiers, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Support Vector Regression (SVR) to improve the precision of age prediction based on the present methods. In this algorithm, the traits of the facial pictures are explicated as traits vectors by AAM model, and the classifiers are utilized to estimate the age. We were able to recognize that the accuracy of SVR algorithm is better than the accuracy of KNN and SVM classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of pornographic content on Twitter using support vector machine and Naive Bayes Concepts extraction in ontology learning using language patterns for better accuracy Automatically generate a specific human computer interaction from an interface diagram model The Triple Helix Model: University-industry-governments linkage web-based application recommendation systems for emerging commercial-base research State of the art of telepresence with a virtual reality headset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1