一种新的变长染色体表示遗传聚类算法

Ming-an Zhang, Yong Deng, Dong-xia Chang
{"title":"一种新的变长染色体表示遗传聚类算法","authors":"Ming-an Zhang, Yong Deng, Dong-xia Chang","doi":"10.1145/2598394.2602272","DOIUrl":null,"url":null,"abstract":"The paper proposed a new genetic clustering algorithm with variable-length chromosome representation (GCVCR), which can automatically evolve and find the optimal number of clusters as well as proper cluster centers of the data set. A new clustering criterion based on message passing between data points and the candidate centers described by the chromosome are presented to make the clustering problem more effective. The simulation results show the effectiveness of the proposed algorithm.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel genetic clustering algorithm with variable-length chromosome representation\",\"authors\":\"Ming-an Zhang, Yong Deng, Dong-xia Chang\",\"doi\":\"10.1145/2598394.2602272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposed a new genetic clustering algorithm with variable-length chromosome representation (GCVCR), which can automatically evolve and find the optimal number of clusters as well as proper cluster centers of the data set. A new clustering criterion based on message passing between data points and the candidate centers described by the chromosome are presented to make the clustering problem more effective. The simulation results show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2602272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的变长染色体表示遗传聚类算法(GCVCR),该算法能够自动进化并找到数据集的最优聚类数和合适的聚类中心。为了提高聚类问题的有效性,提出了一种新的基于数据点之间的信息传递和染色体描述的候选中心的聚类准则。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel genetic clustering algorithm with variable-length chromosome representation
The paper proposed a new genetic clustering algorithm with variable-length chromosome representation (GCVCR), which can automatically evolve and find the optimal number of clusters as well as proper cluster centers of the data set. A new clustering criterion based on message passing between data points and the candidate centers described by the chromosome are presented to make the clustering problem more effective. The simulation results show the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1