等离子体诱导液体基聚合物透镜成形

C. Gerhard, G. Mielke, L. Beste, D. Tasche
{"title":"等离子体诱导液体基聚合物透镜成形","authors":"C. Gerhard, G. Mielke, L. Beste, D. Tasche","doi":"10.1117/12.2594607","DOIUrl":null,"url":null,"abstract":"Liquid-based lenses are of notable interest for the realization of prototypes, small batch series and even mass-product articles as for example micro lens arrays or low-cost optics. Hence, quite a number of different approaches for the manufacture of such lenses are in hand. The focal length of liquid lenses can be customized by the choice of the used liquid, a modification of its viscosity, for example via heating, substrate coating or overhead storing and curing. In this contribution, we present a further approach based on plasma treatment of the substrate surface where two different effects are generated by the use of different process gases. After treatment, optical cement is applied to the surfaces, forming a plano-convex lens due to surface tension. Argon plasma treatment leads to a reduction of the contact angle and an increase in the focal length of the lens in the course of treatment. The opposite effect, an increase in contact angle and a decrease in focal length, respectively, occurs when using octafluorocyclobutane as process gas. The possible range of currently realizable focal lengths and the particularly underlying effects are presented in this contribution.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plasma-induced shaping of liquid-based polymer lenses\",\"authors\":\"C. Gerhard, G. Mielke, L. Beste, D. Tasche\",\"doi\":\"10.1117/12.2594607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid-based lenses are of notable interest for the realization of prototypes, small batch series and even mass-product articles as for example micro lens arrays or low-cost optics. Hence, quite a number of different approaches for the manufacture of such lenses are in hand. The focal length of liquid lenses can be customized by the choice of the used liquid, a modification of its viscosity, for example via heating, substrate coating or overhead storing and curing. In this contribution, we present a further approach based on plasma treatment of the substrate surface where two different effects are generated by the use of different process gases. After treatment, optical cement is applied to the surfaces, forming a plano-convex lens due to surface tension. Argon plasma treatment leads to a reduction of the contact angle and an increase in the focal length of the lens in the course of treatment. The opposite effect, an increase in contact angle and a decrease in focal length, respectively, occurs when using octafluorocyclobutane as process gas. The possible range of currently realizable focal lengths and the particularly underlying effects are presented in this contribution.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2594607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

液体基透镜对于实现原型、小批量系列甚至批量产品(例如微透镜阵列或低成本光学器件)具有显著的兴趣。因此,相当多的不同的方法来制造这样的镜头是在手。液体透镜的焦距可以通过选择使用的液体来定制,改变其粘度,例如通过加热,基材涂层或头顶储存和固化。在这篇文章中,我们提出了一种基于等离子体处理基底表面的进一步方法,其中使用不同的工艺气体会产生两种不同的效果。处理后,光学水泥被应用到表面,形成一个平凸透镜由于表面张力。氩等离子体处理导致接触角减小,透镜焦距增大。当使用八氟环丁烷作为工艺气体时,会发生相反的效果,即接触角增加和焦距减小。目前可实现的焦距的可能范围和特别潜在的影响提出了这一贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma-induced shaping of liquid-based polymer lenses
Liquid-based lenses are of notable interest for the realization of prototypes, small batch series and even mass-product articles as for example micro lens arrays or low-cost optics. Hence, quite a number of different approaches for the manufacture of such lenses are in hand. The focal length of liquid lenses can be customized by the choice of the used liquid, a modification of its viscosity, for example via heating, substrate coating or overhead storing and curing. In this contribution, we present a further approach based on plasma treatment of the substrate surface where two different effects are generated by the use of different process gases. After treatment, optical cement is applied to the surfaces, forming a plano-convex lens due to surface tension. Argon plasma treatment leads to a reduction of the contact angle and an increase in the focal length of the lens in the course of treatment. The opposite effect, an increase in contact angle and a decrease in focal length, respectively, occurs when using octafluorocyclobutane as process gas. The possible range of currently realizable focal lengths and the particularly underlying effects are presented in this contribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast, semi-automated geometric and functional characterization of miniaturized lenses using optical coherence tomography-based systems and wavefront sensors Simulation of system transmission values for different angles of incidence Acoustic emissions in the glass polishing process: a possible approach for process monitoring Conceptual considerations for the paperless production of ophthalmic lenses Superposition of cryogenic and ultrasonic assisted machining of Zerodur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1