Wen Qi, Hang Su, Junhao Zhang, R. Song, G. Ferrigno, E. De Momi, A. Aliverti
{"title":"基于表面肌电信号的机器人手指屈曲跟踪主动学习策略","authors":"Wen Qi, Hang Su, Junhao Zhang, R. Song, G. Ferrigno, E. De Momi, A. Aliverti","doi":"10.1109/ICARM52023.2021.9536163","DOIUrl":null,"url":null,"abstract":"Capturing biosignals from wearable devices is widely applied in the human-robot interaction (HRI) area. For example, surface electromyography (sEMG) signals are always adopted to track finger flexion for hand robot control. However, it is difficult to extract features from the weak sEMG signals with several noises. The existing regression model cannot be dealing with changes in real robot control scenarios. This paper proposed an sEMG based finger flexion tracking framework for robot hand control using the active learning strategy. It consists of an offline regression model and an online model updating module—the former aims to build the regression model based on the processed sEMG and finger angles. The latter is to update the model when it gets a trigger. The comparison results prove the performance of the active learning strategy in the online scenario. By comparing the overall updating times and errors, the decision tree method saves more computational time. At the same time, Gaussian regression obtains a higher accuracy.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active Learning Strategy of Finger Flexion Tracking using sEMG for Robot Hand Control\",\"authors\":\"Wen Qi, Hang Su, Junhao Zhang, R. Song, G. Ferrigno, E. De Momi, A. Aliverti\",\"doi\":\"10.1109/ICARM52023.2021.9536163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing biosignals from wearable devices is widely applied in the human-robot interaction (HRI) area. For example, surface electromyography (sEMG) signals are always adopted to track finger flexion for hand robot control. However, it is difficult to extract features from the weak sEMG signals with several noises. The existing regression model cannot be dealing with changes in real robot control scenarios. This paper proposed an sEMG based finger flexion tracking framework for robot hand control using the active learning strategy. It consists of an offline regression model and an online model updating module—the former aims to build the regression model based on the processed sEMG and finger angles. The latter is to update the model when it gets a trigger. The comparison results prove the performance of the active learning strategy in the online scenario. By comparing the overall updating times and errors, the decision tree method saves more computational time. At the same time, Gaussian regression obtains a higher accuracy.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Learning Strategy of Finger Flexion Tracking using sEMG for Robot Hand Control
Capturing biosignals from wearable devices is widely applied in the human-robot interaction (HRI) area. For example, surface electromyography (sEMG) signals are always adopted to track finger flexion for hand robot control. However, it is difficult to extract features from the weak sEMG signals with several noises. The existing regression model cannot be dealing with changes in real robot control scenarios. This paper proposed an sEMG based finger flexion tracking framework for robot hand control using the active learning strategy. It consists of an offline regression model and an online model updating module—the former aims to build the regression model based on the processed sEMG and finger angles. The latter is to update the model when it gets a trigger. The comparison results prove the performance of the active learning strategy in the online scenario. By comparing the overall updating times and errors, the decision tree method saves more computational time. At the same time, Gaussian regression obtains a higher accuracy.