时钟电路中75%节电的半摆频方案

H. Kojima, Satoshi Tanaka, K. Sasaki
{"title":"时钟电路中75%节电的半摆频方案","authors":"H. Kojima, Satoshi Tanaka, K. Sasaki","doi":"10.1109/VLSIC.1994.586193","DOIUrl":null,"url":null,"abstract":"We propose a half-swing clocking scheme that allows us to reduce power consumption of clocking circuitry by as much as 75%, because all the clock signal swings are reduced to half of the LSI supply voltage. The new clocking scheme causes quite small speed degradation, because the random logic circuits in the critical path are still supplied by the full supply voltage. We also propose a clock driver which supplies half-swing clock and generates half V/sub DD/ by itself. We confirmed that the half-swing clocking scheme provided 67% power saving in a test chip fabricated with 0.5 /spl mu/m CMOS technology, ideally 75%, in the clocking circuitry, and that the degradation in speed was only 0.5 ns by circuit simulation. The key to the proposed clocking scheme is the concept that the voltage swing is reduced only for clocking circuitry, but is retained for all other circuits in the chip. This results in significant power reduction with minimal speed degradation. >","PeriodicalId":350730,"journal":{"name":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Half-Swing Clocking Scheme for 75% Power Saving in Clocking Circuitry\",\"authors\":\"H. Kojima, Satoshi Tanaka, K. Sasaki\",\"doi\":\"10.1109/VLSIC.1994.586193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a half-swing clocking scheme that allows us to reduce power consumption of clocking circuitry by as much as 75%, because all the clock signal swings are reduced to half of the LSI supply voltage. The new clocking scheme causes quite small speed degradation, because the random logic circuits in the critical path are still supplied by the full supply voltage. We also propose a clock driver which supplies half-swing clock and generates half V/sub DD/ by itself. We confirmed that the half-swing clocking scheme provided 67% power saving in a test chip fabricated with 0.5 /spl mu/m CMOS technology, ideally 75%, in the clocking circuitry, and that the degradation in speed was only 0.5 ns by circuit simulation. The key to the proposed clocking scheme is the concept that the voltage swing is reduced only for clocking circuitry, but is retained for all other circuits in the chip. This results in significant power reduction with minimal speed degradation. >\",\"PeriodicalId\":350730,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.1994.586193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1994.586193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

我们提出了一种半摆频时钟方案,使我们能够将时钟电路的功耗降低多达75%,因为所有时钟信号的摆频都降低到LSI电源电压的一半。由于关键路径上的随机逻辑电路仍然由全电源电压供电,因此新的时钟方案导致的速度下降很小。我们还提出了一种时钟驱动器,它提供半摆钟,并自己产生半V/sub DD/。在采用0.5 /spl mu/m CMOS技术制作的测试芯片上,我们证实了半摆频方案在时钟电路中节省了67%的功耗,理想情况下节省了75%,并且通过电路仿真,速度下降仅为0.5 ns。提出的时钟方案的关键是电压摆幅只对时钟电路减小的概念,但对芯片中的所有其他电路保留。这导致显著的功率降低和最小的速度退化。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Half-Swing Clocking Scheme for 75% Power Saving in Clocking Circuitry
We propose a half-swing clocking scheme that allows us to reduce power consumption of clocking circuitry by as much as 75%, because all the clock signal swings are reduced to half of the LSI supply voltage. The new clocking scheme causes quite small speed degradation, because the random logic circuits in the critical path are still supplied by the full supply voltage. We also propose a clock driver which supplies half-swing clock and generates half V/sub DD/ by itself. We confirmed that the half-swing clocking scheme provided 67% power saving in a test chip fabricated with 0.5 /spl mu/m CMOS technology, ideally 75%, in the clocking circuitry, and that the degradation in speed was only 0.5 ns by circuit simulation. The key to the proposed clocking scheme is the concept that the voltage swing is reduced only for clocking circuitry, but is retained for all other circuits in the chip. This results in significant power reduction with minimal speed degradation. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circuit Techniques For An 8-ns Ecl 100K Compatible 3.3v 16mb Bicmos Sram With Minimum Operation Voltage Of 2.3v A 15- 150mhz, All-Digital Phase-Locked Loop with 50-Cycle Lock Time for High-Performance Low-Power Microprocessors A Digital Self Compensation Circuit for High Speed D/a Converters A 110 mhz Mpeg2 Variable Length Decoder LSI A 200mhz 16mbit Synchronous Dram With Block Access Mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1