{"title":"用于检测学习者兴趣水平的自动姿势分析","authors":"Selene Mota, Rosalind W. Picard","doi":"10.1109/CVPRW.2003.10047","DOIUrl":null,"url":null,"abstract":"This paper presents a system for recognizing naturally occurring postures and associated affective states related to a child's interest level while performing a learning task on a computer. Postures are gathered using two matrices of pressure sensors mounted on the seat and back of a chair. Subsequently, posture features are extracted using a mixture of four gaussians, and input to a 3-layer feed-forward neural network. The neural network classifies nine postures in real time and achieves an overall accuracy of 87.6% when tested with postures coming from new subjects. A set of independent Hidden Markov Models (HMMs) is used to analyze temporal patterns among these posture sequences in order to determine three categories related to a child's level of interest, as rated by human observers. The system reaches an overall performance of 82.3% with posture sequences coming from known subjects and 76.5% with unknown subjects.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"172 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"351","resultStr":"{\"title\":\"Automated Posture Analysis for Detecting Learner's Interest Level\",\"authors\":\"Selene Mota, Rosalind W. Picard\",\"doi\":\"10.1109/CVPRW.2003.10047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system for recognizing naturally occurring postures and associated affective states related to a child's interest level while performing a learning task on a computer. Postures are gathered using two matrices of pressure sensors mounted on the seat and back of a chair. Subsequently, posture features are extracted using a mixture of four gaussians, and input to a 3-layer feed-forward neural network. The neural network classifies nine postures in real time and achieves an overall accuracy of 87.6% when tested with postures coming from new subjects. A set of independent Hidden Markov Models (HMMs) is used to analyze temporal patterns among these posture sequences in order to determine three categories related to a child's level of interest, as rated by human observers. The system reaches an overall performance of 82.3% with posture sequences coming from known subjects and 76.5% with unknown subjects.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"172 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"351\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Posture Analysis for Detecting Learner's Interest Level
This paper presents a system for recognizing naturally occurring postures and associated affective states related to a child's interest level while performing a learning task on a computer. Postures are gathered using two matrices of pressure sensors mounted on the seat and back of a chair. Subsequently, posture features are extracted using a mixture of four gaussians, and input to a 3-layer feed-forward neural network. The neural network classifies nine postures in real time and achieves an overall accuracy of 87.6% when tested with postures coming from new subjects. A set of independent Hidden Markov Models (HMMs) is used to analyze temporal patterns among these posture sequences in order to determine three categories related to a child's level of interest, as rated by human observers. The system reaches an overall performance of 82.3% with posture sequences coming from known subjects and 76.5% with unknown subjects.