基于离散余弦变换和支持向量机的人脸识别

Lihong Zhao, Yulu Cai, Jinghong Li, Xinhe Xu
{"title":"基于离散余弦变换和支持向量机的人脸识别","authors":"Lihong Zhao, Yulu Cai, Jinghong Li, Xinhe Xu","doi":"10.1109/ICNNB.2005.1614838","DOIUrl":null,"url":null,"abstract":"Face recognition is a rapidly growing research area due to the increasing demands for the security in commercial and jurally enforcement applications. High information redundancy and correlation in face images result in the inefficiency when such images are used directly for recognition. In this paper, discrete cosine transforms is used to reduce image information redundancy, because only a subset of the transform coefficients are necessary to preserve the most important facial features such as hair outline, eyes and mouth. The experimental results on the ORL face database utilizing the SVM algorithm show that the satisfying recognition performance can be obtained. The correct recognition rate is 96.5%","PeriodicalId":145719,"journal":{"name":"2005 International Conference on Neural Networks and Brain","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Face Recognition Based on Discrete Cosine Transform and Support Vector Machine\",\"authors\":\"Lihong Zhao, Yulu Cai, Jinghong Li, Xinhe Xu\",\"doi\":\"10.1109/ICNNB.2005.1614838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is a rapidly growing research area due to the increasing demands for the security in commercial and jurally enforcement applications. High information redundancy and correlation in face images result in the inefficiency when such images are used directly for recognition. In this paper, discrete cosine transforms is used to reduce image information redundancy, because only a subset of the transform coefficients are necessary to preserve the most important facial features such as hair outline, eyes and mouth. The experimental results on the ORL face database utilizing the SVM algorithm show that the satisfying recognition performance can be obtained. The correct recognition rate is 96.5%\",\"PeriodicalId\":145719,\"journal\":{\"name\":\"2005 International Conference on Neural Networks and Brain\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Neural Networks and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNB.2005.1614838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Neural Networks and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNB.2005.1614838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

人脸识别是一个快速发展的研究领域,由于日益增长的需求,安全的商业和法律执法应用。人脸图像信息的高冗余性和相关性导致直接用于人脸识别的效率低下。本文使用离散余弦变换来减少图像信息冗余,因为只需要一小部分变换系数就可以保留最重要的面部特征,如头发轮廓、眼睛和嘴巴。利用支持向量机算法在ORL人脸数据库上的实验结果表明,该算法可以获得满意的识别性能。正确识别率为96.5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Recognition Based on Discrete Cosine Transform and Support Vector Machine
Face recognition is a rapidly growing research area due to the increasing demands for the security in commercial and jurally enforcement applications. High information redundancy and correlation in face images result in the inefficiency when such images are used directly for recognition. In this paper, discrete cosine transforms is used to reduce image information redundancy, because only a subset of the transform coefficients are necessary to preserve the most important facial features such as hair outline, eyes and mouth. The experimental results on the ORL face database utilizing the SVM algorithm show that the satisfying recognition performance can be obtained. The correct recognition rate is 96.5%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Levenberg-Marquardt method to the training of spiking neural networks Design and Realization of a Meaningful Digital Watermarking Algorithm Based on RBF Neural Network* Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network Connecting Brains and Robots by Computational Theories Finding Hidden Factors in Large Spatiotemporal Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1