{"title":"基于支持向量机的人体运动检测","authors":"J. Grahn, H. Kjellstromg","doi":"10.1109/VSPETS.2005.1570920","DOIUrl":null,"url":null,"abstract":"This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as \"human\" or \"non-human\". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using SVM for Efficient Detection of Human Motion\",\"authors\":\"J. Grahn, H. Kjellstromg\",\"doi\":\"10.1109/VSPETS.2005.1570920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as \\\"human\\\" or \\\"non-human\\\". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.\",\"PeriodicalId\":435841,\"journal\":{\"name\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSPETS.2005.1570920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种视频中人物的检测方法。在这里,检测被表述为将视频帧中不同大小窗口中的图像模式分类为“人类”或“非人类”的问题。计算效率是最重要的,这使得我们使用快速的方法进行图像预处理和分类。使用线性时空差分滤波器来表示图像中的运动信息。利用支持向量机(SVM)对时空像元差异模式进行分类,该方法在高维、高度非线性的特征空间中被证明是有效的。此外,采用了级联架构,以利用大多数窗口易于分类而少数窗口难以分类的事实。当对街道场景中不同身材和服装的人的图像进行测试时,这种检测方法显示出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using SVM for Efficient Detection of Human Motion
This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as "human" or "non-human". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1