{"title":"Beurling素数分布的一个Riemann-von mangoldt型公式","authors":"S. R'ev'esz","doi":"10.1556/314.2021.00019","DOIUrl":null,"url":null,"abstract":"In this paper we work out a Riemann–von Mangoldt type formula for the summatory function := , where is an arithmetical semigroup (a Beurling generalized system of integers) and is the corresponding von Mangoldt function attaining with a prime element and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function , belonging to , to the number of zeroes of in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.","PeriodicalId":383314,"journal":{"name":"Mathematica Pannonica","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Riemann–von Mangoldt-Type Formula for the Distribution of Beurling Primes\",\"authors\":\"S. R'ev'esz\",\"doi\":\"10.1556/314.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we work out a Riemann–von Mangoldt type formula for the summatory function := , where is an arithmetical semigroup (a Beurling generalized system of integers) and is the corresponding von Mangoldt function attaining with a prime element and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function , belonging to , to the number of zeroes of in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.\",\"PeriodicalId\":383314,\"journal\":{\"name\":\"Mathematica Pannonica\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Pannonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/314.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/314.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Riemann–von Mangoldt-Type Formula for the Distribution of Beurling Primes
In this paper we work out a Riemann–von Mangoldt type formula for the summatory function := , where is an arithmetical semigroup (a Beurling generalized system of integers) and is the corresponding von Mangoldt function attaining with a prime element and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function , belonging to , to the number of zeroes of in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.