A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N. Thakor
{"title":"基于振动触觉生物反馈的脑机接口操作","authors":"A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N. Thakor","doi":"10.1109/CNE.2007.369639","DOIUrl":null,"url":null,"abstract":"Advances in brain-computer interfaces (BCI) will require the integration of haptic feedback channels to add extra sensory dimensions for applications such as neuroprostheses. To the best of our knowledge, previous BCIs have relied on visual biofeedback to the user in the form of a computer interface or a device. This study demonstrates that it is possible to operate a BCI using only vibrotactile biofeedback. Our results show that subjects are able to use vibrotactile feedback to control the BCI with accuracy as high as 72% for a 1D targeting task. We also found that varying placement of the vibratory stimulation between the left and right biceps introduces a significant bias in accuracy figures. Further work to compensate for the use of vibratory or other haptic feedback modalities will lead to the development of novel BCIs suitable for neuroprosthesis control.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Operation of a Brain-Computer Interface Using Vibrotactile Biofeedback\",\"authors\":\"A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N. Thakor\",\"doi\":\"10.1109/CNE.2007.369639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in brain-computer interfaces (BCI) will require the integration of haptic feedback channels to add extra sensory dimensions for applications such as neuroprostheses. To the best of our knowledge, previous BCIs have relied on visual biofeedback to the user in the form of a computer interface or a device. This study demonstrates that it is possible to operate a BCI using only vibrotactile biofeedback. Our results show that subjects are able to use vibrotactile feedback to control the BCI with accuracy as high as 72% for a 1D targeting task. We also found that varying placement of the vibratory stimulation between the left and right biceps introduces a significant bias in accuracy figures. Further work to compensate for the use of vibratory or other haptic feedback modalities will lead to the development of novel BCIs suitable for neuroprosthesis control.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation of a Brain-Computer Interface Using Vibrotactile Biofeedback
Advances in brain-computer interfaces (BCI) will require the integration of haptic feedback channels to add extra sensory dimensions for applications such as neuroprostheses. To the best of our knowledge, previous BCIs have relied on visual biofeedback to the user in the form of a computer interface or a device. This study demonstrates that it is possible to operate a BCI using only vibrotactile biofeedback. Our results show that subjects are able to use vibrotactile feedback to control the BCI with accuracy as high as 72% for a 1D targeting task. We also found that varying placement of the vibratory stimulation between the left and right biceps introduces a significant bias in accuracy figures. Further work to compensate for the use of vibratory or other haptic feedback modalities will lead to the development of novel BCIs suitable for neuroprosthesis control.