基于遗传禁止搜索算法的柔性作业调度研究

Lianpo Li, Wenjiang Wu, Yifan Hu
{"title":"基于遗传禁止搜索算法的柔性作业调度研究","authors":"Lianpo Li, Wenjiang Wu, Yifan Hu","doi":"10.1109/ICTech55460.2022.00019","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency of flexible job workshop scheduling and production with the goal of maximum completion time, this paper analyzes the encoding and decoding methods of genetic algorithm, the method of population initialization, and sets the corresponding genetic operator parameters. Use prohibited search algorithm which rely on the initial solution to eliminate repetitive work and jump out of the local optimal solution. Firstly, the initial population uses genetic algorithm to search in the global solution space quickly and parallelly. After the iteration ends, prohibited conditions are set in the local region to search again. The hybrid genetic prohibited search algorithm is used to test benchmark sample data, and the results show that the algorithm can reduce the shop completion time within the specified number of iterations, which verifies the feasibility of the algorithm.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Flexible Job Scheduling Based on Genetic Prohibited Search Algorithm\",\"authors\":\"Lianpo Li, Wenjiang Wu, Yifan Hu\",\"doi\":\"10.1109/ICTech55460.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the efficiency of flexible job workshop scheduling and production with the goal of maximum completion time, this paper analyzes the encoding and decoding methods of genetic algorithm, the method of population initialization, and sets the corresponding genetic operator parameters. Use prohibited search algorithm which rely on the initial solution to eliminate repetitive work and jump out of the local optimal solution. Firstly, the initial population uses genetic algorithm to search in the global solution space quickly and parallelly. After the iteration ends, prohibited conditions are set in the local region to search again. The hybrid genetic prohibited search algorithm is used to test benchmark sample data, and the results show that the algorithm can reduce the shop completion time within the specified number of iterations, which verifies the feasibility of the algorithm.\",\"PeriodicalId\":290836,\"journal\":{\"name\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTech55460.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高以最大完成时间为目标的柔性作业车间调度和生产效率,分析了遗传算法的编码和解码方法、种群初始化方法,并设置了相应的遗传算子参数。采用依赖初始解的禁止搜索算法,消除重复工作,跳出局部最优解。首先,初始种群采用遗传算法在全局解空间中快速并行搜索;迭代结束后,在局部区域设置禁止条件,重新搜索。采用混合遗传禁止搜索算法对基准样本数据进行测试,结果表明,该算法能在规定的迭代次数内缩短车间完工时间,验证了算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Flexible Job Scheduling Based on Genetic Prohibited Search Algorithm
In order to improve the efficiency of flexible job workshop scheduling and production with the goal of maximum completion time, this paper analyzes the encoding and decoding methods of genetic algorithm, the method of population initialization, and sets the corresponding genetic operator parameters. Use prohibited search algorithm which rely on the initial solution to eliminate repetitive work and jump out of the local optimal solution. Firstly, the initial population uses genetic algorithm to search in the global solution space quickly and parallelly. After the iteration ends, prohibited conditions are set in the local region to search again. The hybrid genetic prohibited search algorithm is used to test benchmark sample data, and the results show that the algorithm can reduce the shop completion time within the specified number of iterations, which verifies the feasibility of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin Model Construction and Management Method of Workshop Based on Cloud Platform Security Enhancement for SMS Verification Code in Mobile Payment Intelligent Drug Delivery Car System Using STM32 Motor Fault Diagnosis Method Based on Deep Learning Design and Implementation of SPARQL Engine Based on Heuristic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1