采用数据融合、预测和模糊逻辑的高效环境监测系统

Kostas Kolomvatsos, C. Anagnostopoulos, S. Hadjiefthymiades
{"title":"采用数据融合、预测和模糊逻辑的高效环境监测系统","authors":"Kostas Kolomvatsos, C. Anagnostopoulos, S. Hadjiefthymiades","doi":"10.1109/IISA.2015.7388070","DOIUrl":null,"url":null,"abstract":"Environmental monitoring plays an important role in the identification of abnormalities in the environment's characteristics. Abnormalities are related to negative effects that, consequently, heavily affect human lives. A number of sensors could be placed in a specific area and undertake the responsibility of monitoring environment's characteristics for specific phenomena. Sensors report back their measurements to a central system that is capable of situational reasoning. Accordingly, the system, through decision making, responds to any event related to the observed phenomena. In this paper, we propose a mechanism that builds on top of the sensors measurements and derives the appropriate decisions for the immediate identification of events. The proposed system adopts data fusion and prediction (time series regression) statistical learning methods for efficiently aggregating sensors measurements. We also adopt Fuzzy Logic for handling the uncertainty on the decision making on the derived alerts. We perform a set of simulations over real data and report on the advantages and disadvantages of the proposed system.","PeriodicalId":433872,"journal":{"name":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An efficient environmental monitoring system adopting data fusion, prediction, & fuzzy logic\",\"authors\":\"Kostas Kolomvatsos, C. Anagnostopoulos, S. Hadjiefthymiades\",\"doi\":\"10.1109/IISA.2015.7388070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental monitoring plays an important role in the identification of abnormalities in the environment's characteristics. Abnormalities are related to negative effects that, consequently, heavily affect human lives. A number of sensors could be placed in a specific area and undertake the responsibility of monitoring environment's characteristics for specific phenomena. Sensors report back their measurements to a central system that is capable of situational reasoning. Accordingly, the system, through decision making, responds to any event related to the observed phenomena. In this paper, we propose a mechanism that builds on top of the sensors measurements and derives the appropriate decisions for the immediate identification of events. The proposed system adopts data fusion and prediction (time series regression) statistical learning methods for efficiently aggregating sensors measurements. We also adopt Fuzzy Logic for handling the uncertainty on the decision making on the derived alerts. We perform a set of simulations over real data and report on the advantages and disadvantages of the proposed system.\",\"PeriodicalId\":433872,\"journal\":{\"name\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2015.7388070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2015.7388070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

环境监测在识别环境特征异常方面起着重要的作用。异常与负面影响有关,因此严重影响人类生活。一些传感器可以放置在一个特定的区域,承担监测特定现象的环境特征的责任。传感器将它们的测量结果报告给一个能够进行情景推理的中央系统。因此,系统通过决策,对与观察到的现象有关的任何事件作出反应。在本文中,我们提出了一种建立在传感器测量之上的机制,并为立即识别事件派生出适当的决策。该系统采用数据融合和预测(时间序列回归)统计学习方法对传感器的测量数据进行有效的聚合。我们还采用模糊逻辑来处理衍生警报决策的不确定性。我们对实际数据进行了一组模拟,并报告了所提出系统的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient environmental monitoring system adopting data fusion, prediction, & fuzzy logic
Environmental monitoring plays an important role in the identification of abnormalities in the environment's characteristics. Abnormalities are related to negative effects that, consequently, heavily affect human lives. A number of sensors could be placed in a specific area and undertake the responsibility of monitoring environment's characteristics for specific phenomena. Sensors report back their measurements to a central system that is capable of situational reasoning. Accordingly, the system, through decision making, responds to any event related to the observed phenomena. In this paper, we propose a mechanism that builds on top of the sensors measurements and derives the appropriate decisions for the immediate identification of events. The proposed system adopts data fusion and prediction (time series regression) statistical learning methods for efficiently aggregating sensors measurements. We also adopt Fuzzy Logic for handling the uncertainty on the decision making on the derived alerts. We perform a set of simulations over real data and report on the advantages and disadvantages of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A learning approach for strategic consumers in smart electricity markets On the construction of increasing-chord graphs on convex point sets A braided routing mechanism to reduce traffic load's local variance in wireless sensor networks Monitoring people with MCI: Deployment in a real scenario for low-budget smartphones MicroCAS: Design and implementation of proposed standards in micro-learning on mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1