复杂三维环境下无线传感器网络寿命最大化的进化计算

Xin-yuan Zhang, Yue-jiao Gong, Jingjing Li, Ying Lin
{"title":"复杂三维环境下无线传感器网络寿命最大化的进化计算","authors":"Xin-yuan Zhang, Yue-jiao Gong, Jingjing Li, Ying Lin","doi":"10.1145/2598394.2598415","DOIUrl":null,"url":null,"abstract":"Scheduling the operating mode of nodes is an effective way to maximize the lifetime of wireless sensor networks (WSN). For a WSN with randomly and densely deployed sensors, we could maximize the lifetime of WSN through finding the maximum number of disjoint complete cover sets. Most of the related work focuses on 2D ideal plane. However, deploying sensors on the 3D surface is more practical in real world scenarios. We propose a novel genetic algorithm with redundant sensor auto-adjustment, termed RSAGA. In order to adapt the original GA into this application, we employ some effective mechanisms along with the basic crossover, mutation, and selection operation. The proposed operator of redundant sensor auto-adjustment schedules the redundant sensors in complete cover sets into incomplete cover sets so as to improve the coverage of the latters. A rearrangement operation specially designed for the critical sensors is embedded in the mutation operator to fine-tune the node arrangement of critical fields. Moreover, we modify the traditional cost function by increasing the penalty of incomplete cover sets for improving the convergence rate of finding feasible solutions. Simulation has been conducted to evaluate the performance of RSAGA. The experimental results show that the proposed RSAGA possesses very promising performance in terms of solution quality and robustness.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary computation for lifetime maximization of wireless sensor networks in complex 3D environments\",\"authors\":\"Xin-yuan Zhang, Yue-jiao Gong, Jingjing Li, Ying Lin\",\"doi\":\"10.1145/2598394.2598415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling the operating mode of nodes is an effective way to maximize the lifetime of wireless sensor networks (WSN). For a WSN with randomly and densely deployed sensors, we could maximize the lifetime of WSN through finding the maximum number of disjoint complete cover sets. Most of the related work focuses on 2D ideal plane. However, deploying sensors on the 3D surface is more practical in real world scenarios. We propose a novel genetic algorithm with redundant sensor auto-adjustment, termed RSAGA. In order to adapt the original GA into this application, we employ some effective mechanisms along with the basic crossover, mutation, and selection operation. The proposed operator of redundant sensor auto-adjustment schedules the redundant sensors in complete cover sets into incomplete cover sets so as to improve the coverage of the latters. A rearrangement operation specially designed for the critical sensors is embedded in the mutation operator to fine-tune the node arrangement of critical fields. Moreover, we modify the traditional cost function by increasing the penalty of incomplete cover sets for improving the convergence rate of finding feasible solutions. Simulation has been conducted to evaluate the performance of RSAGA. The experimental results show that the proposed RSAGA possesses very promising performance in terms of solution quality and robustness.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对节点的运行模式进行调度是实现无线传感器网络寿命最大化的有效途径。对于传感器随机密集分布的WSN,我们可以通过寻找不相交完全覆盖集的最大数量来最大化WSN的寿命。大多数相关工作都集中在二维理想平面上。然而,在现实世界的场景中,在3D表面上部署传感器更为实用。我们提出了一种新的冗余传感器自动调节遗传算法,称为RSAGA。为了使原遗传算法适应该应用,我们采用了一些有效的机制以及基本的交叉、突变和选择操作。提出的冗余传感器自动调整算子将完全覆盖组中的冗余传感器自动调整为不完全覆盖组,以提高不完全覆盖组的覆盖率。在突变算子中嵌入了专门为关键传感器设计的重排操作,以微调关键场的节点排列。此外,我们通过增加不完全覆盖集的惩罚来修正传统的代价函数,以提高寻找可行解的收敛速度。通过仿真对该算法的性能进行了评价。实验结果表明,该算法在求解质量和鲁棒性方面都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary computation for lifetime maximization of wireless sensor networks in complex 3D environments
Scheduling the operating mode of nodes is an effective way to maximize the lifetime of wireless sensor networks (WSN). For a WSN with randomly and densely deployed sensors, we could maximize the lifetime of WSN through finding the maximum number of disjoint complete cover sets. Most of the related work focuses on 2D ideal plane. However, deploying sensors on the 3D surface is more practical in real world scenarios. We propose a novel genetic algorithm with redundant sensor auto-adjustment, termed RSAGA. In order to adapt the original GA into this application, we employ some effective mechanisms along with the basic crossover, mutation, and selection operation. The proposed operator of redundant sensor auto-adjustment schedules the redundant sensors in complete cover sets into incomplete cover sets so as to improve the coverage of the latters. A rearrangement operation specially designed for the critical sensors is embedded in the mutation operator to fine-tune the node arrangement of critical fields. Moreover, we modify the traditional cost function by increasing the penalty of incomplete cover sets for improving the convergence rate of finding feasible solutions. Simulation has been conducted to evaluate the performance of RSAGA. The experimental results show that the proposed RSAGA possesses very promising performance in terms of solution quality and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1