人工神经网络与ARIMA时间序列模型相结合的放松管制市场短期价格预测

Phatchakorn Areekul, T. Senjyu, H. Toyama, A. Yona
{"title":"人工神经网络与ARIMA时间序列模型相结合的放松管制市场短期价格预测","authors":"Phatchakorn Areekul, T. Senjyu, H. Toyama, A. Yona","doi":"10.1109/TD-ASIA.2009.5356936","DOIUrl":null,"url":null,"abstract":"In the framework of competitive electricity markets, power producers and consumers need accurate price forecasting tools. Price forecasts embody crucial information for producers and consumers when planning bidding strategies in order to maximize their benefits and utilities, respectively. The choice of the forecasting model becomes the important influence factor how to improve price forecasting accuracy. In this paper provides a combination methodology that combines both ARIMA and ANN models for predicting short term electricity prices. This method is examined by using the data of Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA and ARIMA-ANN models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.","PeriodicalId":131589,"journal":{"name":"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Combination of artificial neural network and ARIMA time series models for short term price forecasting in deregulated market\",\"authors\":\"Phatchakorn Areekul, T. Senjyu, H. Toyama, A. Yona\",\"doi\":\"10.1109/TD-ASIA.2009.5356936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of competitive electricity markets, power producers and consumers need accurate price forecasting tools. Price forecasts embody crucial information for producers and consumers when planning bidding strategies in order to maximize their benefits and utilities, respectively. The choice of the forecasting model becomes the important influence factor how to improve price forecasting accuracy. In this paper provides a combination methodology that combines both ARIMA and ANN models for predicting short term electricity prices. This method is examined by using the data of Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA and ARIMA-ANN models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.\",\"PeriodicalId\":131589,\"journal\":{\"name\":\"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TD-ASIA.2009.5356936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TD-ASIA.2009.5356936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在竞争激烈的电力市场框架下,电力生产商和消费者需要准确的价格预测工具。价格预测为生产者和消费者在制定投标策略时提供了重要信息,以实现各自利益最大化和效用最大化。预测模型的选择成为如何提高价格预测精度的重要影响因素。本文提供了一种结合ARIMA和ANN模型预测短期电价的组合方法。并以2006年澳大利亚国家电力市场(NEM)、新南威尔士州地区的数据对该方法进行了检验。比较了ARIMA模型和ARIMA- ann模型的预测性能。实证结果表明,ARIMA-ANN模型可以提高价格预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of artificial neural network and ARIMA time series models for short term price forecasting in deregulated market
In the framework of competitive electricity markets, power producers and consumers need accurate price forecasting tools. Price forecasts embody crucial information for producers and consumers when planning bidding strategies in order to maximize their benefits and utilities, respectively. The choice of the forecasting model becomes the important influence factor how to improve price forecasting accuracy. In this paper provides a combination methodology that combines both ARIMA and ANN models for predicting short term electricity prices. This method is examined by using the data of Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA and ARIMA-ANN models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Operational analysis of DC micro-grid using detailed model of distributed generation Real time digital simulator based test system for microgrid management system Case study of customer baseline(CBL) load determination in Korea based on statistical method Assessment of Conditional Value at Risk (CVaR) in transmission investment using Cross Entropy method Governor-response power flow (GRPF) based long-term voltage stability simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1