{"title":"可重构射频前端,用于频率敏捷直接转换接收机和认知无线电系统应用","authors":"E. E. Djoumessi, K. Wu","doi":"10.1109/RWS.2010.5434205","DOIUrl":null,"url":null,"abstract":"A reconfigurable direct conversion receiver front-end for GSM and WLAN bands (1.9 and 2.4 GHz) is proposed and demonstrated for cognitive radio system applications. The RF front-end platform makes use of a silicon varactor-tuned bandpass filter in connection with a tunable six-port demodulator. Varactor diodes of both of the tunable structures are independently biased using two different sets of supply voltage. The demodulation of phase-shift-keying (PSK) signals at a bit rate of 40 Mbps is achieved by using wideband power detectors. An experimental test bench of the proposed receiver is realized, and QPSK and 8PSK signal constellations are measured at the center-operating frequencies of 1.9 and 2.4 GHz for different noise levels.","PeriodicalId":334671,"journal":{"name":"2010 IEEE Radio and Wireless Symposium (RWS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Reconfigurable RF front-end for frequency-agile direct conversion receivers and cognitive radio system applications\",\"authors\":\"E. E. Djoumessi, K. Wu\",\"doi\":\"10.1109/RWS.2010.5434205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reconfigurable direct conversion receiver front-end for GSM and WLAN bands (1.9 and 2.4 GHz) is proposed and demonstrated for cognitive radio system applications. The RF front-end platform makes use of a silicon varactor-tuned bandpass filter in connection with a tunable six-port demodulator. Varactor diodes of both of the tunable structures are independently biased using two different sets of supply voltage. The demodulation of phase-shift-keying (PSK) signals at a bit rate of 40 Mbps is achieved by using wideband power detectors. An experimental test bench of the proposed receiver is realized, and QPSK and 8PSK signal constellations are measured at the center-operating frequencies of 1.9 and 2.4 GHz for different noise levels.\",\"PeriodicalId\":334671,\"journal\":{\"name\":\"2010 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2010.5434205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2010.5434205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable RF front-end for frequency-agile direct conversion receivers and cognitive radio system applications
A reconfigurable direct conversion receiver front-end for GSM and WLAN bands (1.9 and 2.4 GHz) is proposed and demonstrated for cognitive radio system applications. The RF front-end platform makes use of a silicon varactor-tuned bandpass filter in connection with a tunable six-port demodulator. Varactor diodes of both of the tunable structures are independently biased using two different sets of supply voltage. The demodulation of phase-shift-keying (PSK) signals at a bit rate of 40 Mbps is achieved by using wideband power detectors. An experimental test bench of the proposed receiver is realized, and QPSK and 8PSK signal constellations are measured at the center-operating frequencies of 1.9 and 2.4 GHz for different noise levels.