Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, F. Kerschbaum
{"title":"基于后门的深度神经网络水印鲁棒性研究","authors":"Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, F. Kerschbaum","doi":"10.1145/3437880.3460401","DOIUrl":null,"url":null,"abstract":"Watermarking algorithms have been introduced in the past years to protect deep learning models against unauthorized re-distribution. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two simple yet effective attacks -- a black-box and a white-box -- that remove these watermarks without any labeled data from the ground truth. Our black-box attack steals the model and removes the watermark with only API access to the labels. Our white-box attack proposes an efficient watermark removal when the parameters of the marked model are accessible, and improves the time to steal a model up to twenty times over the time to train a model from scratch. We conclude that these watermarking algorithms are insufficient to defend against redistribution by a motivated attacker.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"On the Robustness of Backdoor-based Watermarking in Deep Neural Networks\",\"authors\":\"Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, F. Kerschbaum\",\"doi\":\"10.1145/3437880.3460401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watermarking algorithms have been introduced in the past years to protect deep learning models against unauthorized re-distribution. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two simple yet effective attacks -- a black-box and a white-box -- that remove these watermarks without any labeled data from the ground truth. Our black-box attack steals the model and removes the watermark with only API access to the labels. Our white-box attack proposes an efficient watermark removal when the parameters of the marked model are accessible, and improves the time to steal a model up to twenty times over the time to train a model from scratch. We conclude that these watermarking algorithms are insufficient to defend against redistribution by a motivated attacker.\",\"PeriodicalId\":120300,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437880.3460401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Robustness of Backdoor-based Watermarking in Deep Neural Networks
Watermarking algorithms have been introduced in the past years to protect deep learning models against unauthorized re-distribution. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two simple yet effective attacks -- a black-box and a white-box -- that remove these watermarks without any labeled data from the ground truth. Our black-box attack steals the model and removes the watermark with only API access to the labels. Our white-box attack proposes an efficient watermark removal when the parameters of the marked model are accessible, and improves the time to steal a model up to twenty times over the time to train a model from scratch. We conclude that these watermarking algorithms are insufficient to defend against redistribution by a motivated attacker.