埋藏介质圆柱体线源电磁散射的圆柱波方法

F. Frezza, L. Pajewski, C. Ponti, G. Schettini
{"title":"埋藏介质圆柱体线源电磁散射的圆柱波方法","authors":"F. Frezza, L. Pajewski, C. Ponti, G. Schettini","doi":"10.1109/IWAGPR.2013.6601513","DOIUrl":null,"url":null,"abstract":"An analytical-numerical model for the electromagnetic characterization of GPR scenarios, with a line-source illumination field, is proposed. Solution is given in the spectral-domain, in the case of a two-dimensional geometry with dielectric scatterers buried in a semi-infinite medium. The source and scattered fields are represented by means of cylindrical-wave expansions; the concept of plane-wave spectrum of a cylindrical wave is used to describe the interaction of the fields with the air-soil interface, following the fundamentals of the Cylindrical Wave Approach. The proposed model has been implemented in a Fortran code and numerical results are presented. The electromagnetic field can be calculated both in the near and far region, for arbitrary size and position of the scatterers, and the method can deal with both the fundamental transverse-electric and transverse-magnetic polarization states.","PeriodicalId":257117,"journal":{"name":"2013 7th International Workshop on Advanced Ground Penetrating Radar","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cylindrical-wave approach for line-source electromagnetic scattering by buried dielectric cylinders\",\"authors\":\"F. Frezza, L. Pajewski, C. Ponti, G. Schettini\",\"doi\":\"10.1109/IWAGPR.2013.6601513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical-numerical model for the electromagnetic characterization of GPR scenarios, with a line-source illumination field, is proposed. Solution is given in the spectral-domain, in the case of a two-dimensional geometry with dielectric scatterers buried in a semi-infinite medium. The source and scattered fields are represented by means of cylindrical-wave expansions; the concept of plane-wave spectrum of a cylindrical wave is used to describe the interaction of the fields with the air-soil interface, following the fundamentals of the Cylindrical Wave Approach. The proposed model has been implemented in a Fortran code and numerical results are presented. The electromagnetic field can be calculated both in the near and far region, for arbitrary size and position of the scatterers, and the method can deal with both the fundamental transverse-electric and transverse-magnetic polarization states.\",\"PeriodicalId\":257117,\"journal\":{\"name\":\"2013 7th International Workshop on Advanced Ground Penetrating Radar\",\"volume\":\"296 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 7th International Workshop on Advanced Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAGPR.2013.6601513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2013.6601513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种线源光照场下探地雷达场景电磁特性的解析-数值模型。给出了介电散射体埋在半无限介质中的二维几何结构的谱域解法。源场和散射场用圆柱波展开表示;根据柱面波方法的基本原理,采用柱面波的平面波谱的概念来描述场与空气-土壤界面的相互作用。该模型已在Fortran代码中实现,并给出了数值结果。对于任意大小和位置的散射体,该方法可以计算近、远区域的电磁场,并且可以处理基本的横向电极化态和横向磁极化态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cylindrical-wave approach for line-source electromagnetic scattering by buried dielectric cylinders
An analytical-numerical model for the electromagnetic characterization of GPR scenarios, with a line-source illumination field, is proposed. Solution is given in the spectral-domain, in the case of a two-dimensional geometry with dielectric scatterers buried in a semi-infinite medium. The source and scattered fields are represented by means of cylindrical-wave expansions; the concept of plane-wave spectrum of a cylindrical wave is used to describe the interaction of the fields with the air-soil interface, following the fundamentals of the Cylindrical Wave Approach. The proposed model has been implemented in a Fortran code and numerical results are presented. The electromagnetic field can be calculated both in the near and far region, for arbitrary size and position of the scatterers, and the method can deal with both the fundamental transverse-electric and transverse-magnetic polarization states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring Non destructive assessment of Hot Mix Asphalt compaction with a step frequency radar: Case study Towards physically-based filtering of the soil surface, antenna and coupling effects from near-field GPR data for improved subsurface imaging Time delay and surface roughness estimation by subspace algorithms for pavement survey by radar Applications of a reconfigurable stepped frequency GPR in the chapel of the Holy Spirit, Lecce (Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1