基于本体的低碳网格网络资源描述与发现框架

A. Daouadji, K. Nguyen, M. Lemay, M. Cheriet
{"title":"基于本体的低碳网格网络资源描述与发现框架","authors":"A. Daouadji, K. Nguyen, M. Lemay, M. Cheriet","doi":"10.1109/SMARTGRID.2010.5622090","DOIUrl":null,"url":null,"abstract":"Using smart grids to build low carbon networks is one of the most challenging topics in ICT (Information and Communication Technologies) industry. One of the first worldwide initiatives is the GreenStar Network, completely powered by renewable energy sources such as solar, wind and hydroelectricity across Canada. Smart grid techniques are deployed to migrate data centers among network nodes according to energy source availabilities, thus CO2 emissions are reduced to minimal. Such flexibility requires a scalable resource management support, which is achieved by virtualization technique. It enables the sharing, aggregation, and dynamic configuration of a large variety of resources. A key challenge in developing such a virtualized management is an efficient resource description and discovery framework, due to a large number of elements and the diversity of architectures and protocols. In addition, dynamic characteristics and different resource description methods must be addressed. In this paper, we present an ontology-based resource description framework, developed particularly for ICT energy management purpose, where the focus is on energy-related semantic of resources and their properties. We propose then a scalable resource discovery method in large and dynamic collections of ICT resources, based on semantics similarity inside a federated index using a Bayesian belief network. The proposed framework allows users to identify the cleanest resource deployments in order to achieve a given task, taking into account the energy source availabilities. Experimental results are shown to compare the proposed framework with a traditional one in terms of GHG emission reductions.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Ontology-Based Resource Description and Discovery Framework for Low Carbon Grid Networks\",\"authors\":\"A. Daouadji, K. Nguyen, M. Lemay, M. Cheriet\",\"doi\":\"10.1109/SMARTGRID.2010.5622090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using smart grids to build low carbon networks is one of the most challenging topics in ICT (Information and Communication Technologies) industry. One of the first worldwide initiatives is the GreenStar Network, completely powered by renewable energy sources such as solar, wind and hydroelectricity across Canada. Smart grid techniques are deployed to migrate data centers among network nodes according to energy source availabilities, thus CO2 emissions are reduced to minimal. Such flexibility requires a scalable resource management support, which is achieved by virtualization technique. It enables the sharing, aggregation, and dynamic configuration of a large variety of resources. A key challenge in developing such a virtualized management is an efficient resource description and discovery framework, due to a large number of elements and the diversity of architectures and protocols. In addition, dynamic characteristics and different resource description methods must be addressed. In this paper, we present an ontology-based resource description framework, developed particularly for ICT energy management purpose, where the focus is on energy-related semantic of resources and their properties. We propose then a scalable resource discovery method in large and dynamic collections of ICT resources, based on semantics similarity inside a federated index using a Bayesian belief network. The proposed framework allows users to identify the cleanest resource deployments in order to achieve a given task, taking into account the energy source availabilities. Experimental results are shown to compare the proposed framework with a traditional one in terms of GHG emission reductions.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

利用智能电网构建低碳网络是信息通信技术(ICT)行业最具挑战性的课题之一。全球最早的倡议之一是绿色之星网络,它完全由可再生能源提供动力,如加拿大各地的太阳能、风能和水电。采用智能电网技术,根据能源的可用性在网络节点之间迁移数据中心,从而将二氧化碳排放降至最低。这种灵活性需要可扩展的资源管理支持,这是通过虚拟化技术实现的。它支持各种资源的共享、聚合和动态配置。开发这种虚拟化管理的一个关键挑战是高效的资源描述和发现框架,这是由于大量的元素以及体系结构和协议的多样性。此外,还必须处理动态特性和不同的资源描述方法。在本文中,我们提出了一个基于本体论的资源描述框架,专门为ICT能源管理目的而开发,其中重点是资源及其属性的能源相关语义。然后,我们提出了一种基于贝叶斯信念网络的联合索引内语义相似性的可扩展的ICT资源动态集合资源发现方法。拟议的框架允许用户确定最清洁的资源部署,以实现给定的任务,同时考虑到能源的可用性。实验结果表明,该框架与传统框架在温室气体减排方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontology-Based Resource Description and Discovery Framework for Low Carbon Grid Networks
Using smart grids to build low carbon networks is one of the most challenging topics in ICT (Information and Communication Technologies) industry. One of the first worldwide initiatives is the GreenStar Network, completely powered by renewable energy sources such as solar, wind and hydroelectricity across Canada. Smart grid techniques are deployed to migrate data centers among network nodes according to energy source availabilities, thus CO2 emissions are reduced to minimal. Such flexibility requires a scalable resource management support, which is achieved by virtualization technique. It enables the sharing, aggregation, and dynamic configuration of a large variety of resources. A key challenge in developing such a virtualized management is an efficient resource description and discovery framework, due to a large number of elements and the diversity of architectures and protocols. In addition, dynamic characteristics and different resource description methods must be addressed. In this paper, we present an ontology-based resource description framework, developed particularly for ICT energy management purpose, where the focus is on energy-related semantic of resources and their properties. We propose then a scalable resource discovery method in large and dynamic collections of ICT resources, based on semantics similarity inside a federated index using a Bayesian belief network. The proposed framework allows users to identify the cleanest resource deployments in order to achieve a given task, taking into account the energy source availabilities. Experimental results are shown to compare the proposed framework with a traditional one in terms of GHG emission reductions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum for Smart Grid: Policy Recommendations Enabling Current and Future Applications Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures Quality of Service Networking for Smart Grid Distribution Monitoring The POWER of Networking: How Networking Can Help Power Management Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1