解锁研究人类流动性的社会网络分析方法

Nina Wiedemann, Henry Martin, M. Raubal
{"title":"解锁研究人类流动性的社会网络分析方法","authors":"Nina Wiedemann, Henry Martin, M. Raubal","doi":"10.5194/agile-giss-3-19-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Planning and operations in urban spaces are strongly affected by human mobility behavior. A better understanding of individual mobility is key to improve transportation systems and to guide the allocation of public space. Previous studies have discovered statistical laws of travel distances, but the topology of movement between places has received little attention. We propose to employ network modelling methods to analyze the effect of spatial and context attributes on individual movement patterns. The perspective of mobility as a network allows to explicitly regard dyadic dependencies of sequential location visits. Here, we consider two methods developed for social networks and provide a formulation of mobility networks to justify their applicability. First, we use the Multiple Regression Quadratic Assignment Procedure to test hypotheses on the influence of location attributes on mobility behavior. Secondly, Stochastic Actor-Oriented Models are applied to model the evolution of mobility networks over time. As a proof-of-concept study, we transform data from one GNSS-based and one check-in based dataset into mobility networks and present results from both methods. We find relations that appear for a majority of samples and thus seem inherent to mobility networks. The differences between individuals and the available datasets are further quantified and discussed. We conclude that the transfer of network modeling methods is an interesting opportunity to study network-related phenomena in geographic information science.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unlocking social network analysis methods for studying human mobility\",\"authors\":\"Nina Wiedemann, Henry Martin, M. Raubal\",\"doi\":\"10.5194/agile-giss-3-19-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Planning and operations in urban spaces are strongly affected by human mobility behavior. A better understanding of individual mobility is key to improve transportation systems and to guide the allocation of public space. Previous studies have discovered statistical laws of travel distances, but the topology of movement between places has received little attention. We propose to employ network modelling methods to analyze the effect of spatial and context attributes on individual movement patterns. The perspective of mobility as a network allows to explicitly regard dyadic dependencies of sequential location visits. Here, we consider two methods developed for social networks and provide a formulation of mobility networks to justify their applicability. First, we use the Multiple Regression Quadratic Assignment Procedure to test hypotheses on the influence of location attributes on mobility behavior. Secondly, Stochastic Actor-Oriented Models are applied to model the evolution of mobility networks over time. As a proof-of-concept study, we transform data from one GNSS-based and one check-in based dataset into mobility networks and present results from both methods. We find relations that appear for a majority of samples and thus seem inherent to mobility networks. The differences between individuals and the available datasets are further quantified and discussed. We conclude that the transfer of network modeling methods is an interesting opportunity to study network-related phenomena in geographic information science.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-19-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-19-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要城市空间的规划和运营受到人类流动行为的强烈影响。更好地了解个人流动性是改善交通系统和指导公共空间分配的关键。以前的研究已经发现了旅行距离的统计规律,但地方之间的运动拓扑很少受到关注。我们建议采用网络建模方法来分析空间和环境属性对个体运动模式的影响。移动性作为一个网络的观点允许明确地考虑顺序位置访问的二元依赖关系。在这里,我们考虑了为社交网络开发的两种方法,并提供了一个移动网络的公式来证明它们的适用性。首先,我们使用多元回归二次分配程序来检验位置属性对迁移行为影响的假设。其次,应用随机因子导向模型对交通网络的演化过程进行建模。作为一项概念验证研究,我们将来自一个基于gnss的数据集和一个基于签到的数据集的数据转换为移动网络,并展示了这两种方法的结果。我们发现了大多数样本中出现的关系,因此似乎是移动网络固有的。个体和可用数据集之间的差异进一步量化和讨论。网络建模方法的迁移为地理信息科学中网络相关现象的研究提供了一个有趣的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking social network analysis methods for studying human mobility
Abstract. Planning and operations in urban spaces are strongly affected by human mobility behavior. A better understanding of individual mobility is key to improve transportation systems and to guide the allocation of public space. Previous studies have discovered statistical laws of travel distances, but the topology of movement between places has received little attention. We propose to employ network modelling methods to analyze the effect of spatial and context attributes on individual movement patterns. The perspective of mobility as a network allows to explicitly regard dyadic dependencies of sequential location visits. Here, we consider two methods developed for social networks and provide a formulation of mobility networks to justify their applicability. First, we use the Multiple Regression Quadratic Assignment Procedure to test hypotheses on the influence of location attributes on mobility behavior. Secondly, Stochastic Actor-Oriented Models are applied to model the evolution of mobility networks over time. As a proof-of-concept study, we transform data from one GNSS-based and one check-in based dataset into mobility networks and present results from both methods. We find relations that appear for a majority of samples and thus seem inherent to mobility networks. The differences between individuals and the available datasets are further quantified and discussed. We conclude that the transfer of network modeling methods is an interesting opportunity to study network-related phenomena in geographic information science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is it safe to be attractive? Disentangling the influence of streetscape features on the perceived safety and attractiveness of city streets Satellite parking: a new method for measuring parking occupancy Semantic complexity of geographic questions - A comparison in terms of conceptual transformations of answers Development of an inclusive Mapping Application in a Co-Design Process Visualizing of the below-ground water network infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1