全局思考,局部行动:WAFL文件系统中全局排序和并行处理的缓存设计

P. Denz, Matthew Curtis-Maury, V. Devadas
{"title":"全局思考,局部行动:WAFL文件系统中全局排序和并行处理的缓存设计","authors":"P. Denz, Matthew Curtis-Maury, V. Devadas","doi":"10.1109/ICPP.2016.51","DOIUrl":null,"url":null,"abstract":"Given the enormous disparity in access speeds between main memory and storage media, modern storage servers must leverage highly effective buffer cache policies to meet demanding performance requirements. At the same time, these page replacement policies need to scale efficiently with ever-increasing core counts and memory sizes, which necessitate parallel buffer cache management. However, these requirements of effectiveness and scalability are at odds, because centralized processing does not scale with more processors and parallel policies are a challenge to implement with maximum effectiveness. We have overcome this difficulty in the NetApp Data ONTAP WAFL file system by using a sophisticated technique to simultaneously allow global buffer prioritization while providing parallel management operations. In addition, we have extended the buffer cache to provide a soft isolation of different workloads' buffer cache usage, which is akin to buffer cache quality of server (QoS). This paper presents the design and implementation of these significant extensions in the buffer cache of a high-performance commercial file system.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Think Global, Act Local: A Buffer Cache Design for Global Ordering and Parallel Processing in the WAFL File System\",\"authors\":\"P. Denz, Matthew Curtis-Maury, V. Devadas\",\"doi\":\"10.1109/ICPP.2016.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the enormous disparity in access speeds between main memory and storage media, modern storage servers must leverage highly effective buffer cache policies to meet demanding performance requirements. At the same time, these page replacement policies need to scale efficiently with ever-increasing core counts and memory sizes, which necessitate parallel buffer cache management. However, these requirements of effectiveness and scalability are at odds, because centralized processing does not scale with more processors and parallel policies are a challenge to implement with maximum effectiveness. We have overcome this difficulty in the NetApp Data ONTAP WAFL file system by using a sophisticated technique to simultaneously allow global buffer prioritization while providing parallel management operations. In addition, we have extended the buffer cache to provide a soft isolation of different workloads' buffer cache usage, which is akin to buffer cache quality of server (QoS). This paper presents the design and implementation of these significant extensions in the buffer cache of a high-performance commercial file system.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

考虑到主内存和存储介质之间访问速度的巨大差异,现代存储服务器必须利用高效的缓冲缓存策略来满足苛刻的性能要求。同时,这些页面替换策略需要随着核心数和内存大小的不断增加而有效地扩展,这就需要并行缓冲区缓存管理。然而,这些有效性和可伸缩性的需求是不一致的,因为集中式处理不能扩展更多的处理器,并行策略是实现最大有效性的挑战。我们已经在NetApp Data ONTAP WAFL文件系统中克服了这个困难,通过使用一种复杂的技术,在提供并行管理操作的同时允许全局缓冲区优先级。此外,我们还扩展了缓冲缓存,以提供不同工作负载的缓冲缓存使用的软隔离,这类似于服务器的缓冲缓存质量(QoS)。本文介绍了这些重要扩展在高性能商业文件系统的缓冲缓存中的设计和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Think Global, Act Local: A Buffer Cache Design for Global Ordering and Parallel Processing in the WAFL File System
Given the enormous disparity in access speeds between main memory and storage media, modern storage servers must leverage highly effective buffer cache policies to meet demanding performance requirements. At the same time, these page replacement policies need to scale efficiently with ever-increasing core counts and memory sizes, which necessitate parallel buffer cache management. However, these requirements of effectiveness and scalability are at odds, because centralized processing does not scale with more processors and parallel policies are a challenge to implement with maximum effectiveness. We have overcome this difficulty in the NetApp Data ONTAP WAFL file system by using a sophisticated technique to simultaneously allow global buffer prioritization while providing parallel management operations. In addition, we have extended the buffer cache to provide a soft isolation of different workloads' buffer cache usage, which is akin to buffer cache quality of server (QoS). This paper presents the design and implementation of these significant extensions in the buffer cache of a high-performance commercial file system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel k-Means++ for Multiple Shared-Memory Architectures RCHC: A Holistic Runtime System for Concurrent Heterogeneous Computing Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs Improving RAID Performance Using an Endurable SSD Cache PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1