针对纯密文攻击的可压缩图像加密保密图像分类安全性评估

Tatsuya Chuman, H. Kiya
{"title":"针对纯密文攻击的可压缩图像加密保密图像分类安全性评估","authors":"Tatsuya Chuman, H. Kiya","doi":"10.1109/ICMLC56445.2022.9941309","DOIUrl":null,"url":null,"abstract":"The security of learnable image encryption schemes for image classification using deep neural networks against several attacks has been discussed. On the other hand, block scrambling image encryption using the vision transformer has been proposed, which applies to lossless compression methods such as JPEG standard by dividing an image into permuted blocks. Although robustness of the block scrambling image encryption against jigsaw puzzle solver attacks that utilize a correlation among the blocks has been evaluated under the condition of a large number of encrypted blocks, the security of encrypted images with a small number of blocks has never been evaluated. In this paper, the security of the block scrambling image encryption against ciphertext-only attacks is evaluated by using jigsaw puzzle solver attacks.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security Evaluation of Compressible Image Encryption for Privacy-Preserving Image Classification Against Ciphertext-Only Attacks\",\"authors\":\"Tatsuya Chuman, H. Kiya\",\"doi\":\"10.1109/ICMLC56445.2022.9941309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security of learnable image encryption schemes for image classification using deep neural networks against several attacks has been discussed. On the other hand, block scrambling image encryption using the vision transformer has been proposed, which applies to lossless compression methods such as JPEG standard by dividing an image into permuted blocks. Although robustness of the block scrambling image encryption against jigsaw puzzle solver attacks that utilize a correlation among the blocks has been evaluated under the condition of a large number of encrypted blocks, the security of encrypted images with a small number of blocks has never been evaluated. In this paper, the security of the block scrambling image encryption against ciphertext-only attacks is evaluated by using jigsaw puzzle solver attacks.\",\"PeriodicalId\":117829,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC56445.2022.9941309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了利用深度神经网络进行图像分类的可学习图像加密方案对几种攻击的安全性。另一方面,提出了基于视觉变换的块置乱图像加密方法,该方法通过将图像分割成排列好的块,适用于JPEG标准等无损压缩方法。虽然在大量加密块的情况下,已经评估了块置乱图像加密对利用块之间相关性的拼图求解器攻击的鲁棒性,但从未评估过少量块加密图像的安全性。本文利用拼图求解器攻击来评估块置乱图像加密对纯密文攻击的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Security Evaluation of Compressible Image Encryption for Privacy-Preserving Image Classification Against Ciphertext-Only Attacks
The security of learnable image encryption schemes for image classification using deep neural networks against several attacks has been discussed. On the other hand, block scrambling image encryption using the vision transformer has been proposed, which applies to lossless compression methods such as JPEG standard by dividing an image into permuted blocks. Although robustness of the block scrambling image encryption against jigsaw puzzle solver attacks that utilize a correlation among the blocks has been evaluated under the condition of a large number of encrypted blocks, the security of encrypted images with a small number of blocks has never been evaluated. In this paper, the security of the block scrambling image encryption against ciphertext-only attacks is evaluated by using jigsaw puzzle solver attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1