基于衰落信道的上行海量MIMO系统性能分析

Amare Kassaw, Dereje Hailemariam, A. Zoubir
{"title":"基于衰落信道的上行海量MIMO系统性能分析","authors":"Amare Kassaw, Dereje Hailemariam, A. Zoubir","doi":"10.23919/EUSIPCO.2018.8553192","DOIUrl":null,"url":null,"abstract":"Massive multiple input multiple output (MIMO) is considered as one of the promising technology to significantly improve the spectral efficiency of fifth generation (5G) networks. In this paper, we analyze the performance of uplink massive MIMO systems over a Rician fading channel and imperfect channel state information (CSI) at a base station (BS). Major Rician fading channel parameters including path-loss, shadowing and multipath fading are considered. Minimum mean square error (MMSE) based channel estimation is done at the BS. Assuming a zero-forcing (ZF) detector, a closed-form expression for the uplink achievable rate is derived and expressed as a function of system and propagation parameters. The impact of the system and propagation parameters on the achievable rate are investigated. Numerical results show that, when the Rician K-factor grows, the uplink achievable sum rate improves. Specifically, when both the number of BS antenna and the Rician K-factor become very large, channel estimation becomes more robust and the interference can be average out and thus, uplink sum rate improves sianificantlv,","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Analysis of Uplink Massive MIMO System Over Rician Fading Channel\",\"authors\":\"Amare Kassaw, Dereje Hailemariam, A. Zoubir\",\"doi\":\"10.23919/EUSIPCO.2018.8553192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple input multiple output (MIMO) is considered as one of the promising technology to significantly improve the spectral efficiency of fifth generation (5G) networks. In this paper, we analyze the performance of uplink massive MIMO systems over a Rician fading channel and imperfect channel state information (CSI) at a base station (BS). Major Rician fading channel parameters including path-loss, shadowing and multipath fading are considered. Minimum mean square error (MMSE) based channel estimation is done at the BS. Assuming a zero-forcing (ZF) detector, a closed-form expression for the uplink achievable rate is derived and expressed as a function of system and propagation parameters. The impact of the system and propagation parameters on the achievable rate are investigated. Numerical results show that, when the Rician K-factor grows, the uplink achievable sum rate improves. Specifically, when both the number of BS antenna and the Rician K-factor become very large, channel estimation becomes more robust and the interference can be average out and thus, uplink sum rate improves sianificantlv,\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大规模多输入多输出(MIMO)被认为是显著提高第五代(5G)网络频谱效率的有前途的技术之一。本文分析了在信道状态信息不完全的情况下,基站(BS)下的上行海量MIMO系统的性能。主要信道参数包括路径损失、阴影和多径衰落。基于最小均方误差(MMSE)的信道估计是在BS上完成的。假设存在零强迫(ZF)探测器,推导出上行可达速率的封闭表达式,并将其表示为系统参数和传播参数的函数。研究了系统参数和传输参数对可达速率的影响。数值结果表明,当k因子增大时,上行可达和率提高。具体来说,当BS天线数量和r - k因子都很大时,信道估计变得更加鲁棒,干扰可以被平均出来,上行和速率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Uplink Massive MIMO System Over Rician Fading Channel
Massive multiple input multiple output (MIMO) is considered as one of the promising technology to significantly improve the spectral efficiency of fifth generation (5G) networks. In this paper, we analyze the performance of uplink massive MIMO systems over a Rician fading channel and imperfect channel state information (CSI) at a base station (BS). Major Rician fading channel parameters including path-loss, shadowing and multipath fading are considered. Minimum mean square error (MMSE) based channel estimation is done at the BS. Assuming a zero-forcing (ZF) detector, a closed-form expression for the uplink achievable rate is derived and expressed as a function of system and propagation parameters. The impact of the system and propagation parameters on the achievable rate are investigated. Numerical results show that, when the Rician K-factor grows, the uplink achievable sum rate improves. Specifically, when both the number of BS antenna and the Rician K-factor become very large, channel estimation becomes more robust and the interference can be average out and thus, uplink sum rate improves sianificantlv,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1