基于核的模式识别硬件:使用进化真值表的设计方法

M. Yasunaga, Taro Nakamura, J. H. Kim, I. Yoshihara
{"title":"基于核的模式识别硬件:使用进化真值表的设计方法","authors":"M. Yasunaga, Taro Nakamura, J. H. Kim, I. Yoshihara","doi":"10.1109/EH.2000.869363","DOIUrl":null,"url":null,"abstract":"We propose a new logic circuit design methodology for kernel-based pattern recognition hardware using a genetic algorithm. In the proposed design methodology, pattern data are transformed into the truth tables and the truth tables are evolved to represent kernels in the discrimination functions for pattern recognition. The evolved truth tables are then synthesized to logic circuits. Because of this data direct implementation approach, no floating point numerical circuits are required and the intrinsic parallelism in the pattern data set is embedded into the circuits. Consequently, high speed recognition systems can be realized with acceptable small circuit size. We have applied this methodology to the image recognition and the sonar spectrum recognition tasks, and implemented them onto the newly developed FPGA-based reconfigurable pattern recognition board. The developed system demonstrates higher recognition accuracy and much faster processing speed than the conventional approaches.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kernel-based pattern recognition hardware: its design methodology using evolved truth tables\",\"authors\":\"M. Yasunaga, Taro Nakamura, J. H. Kim, I. Yoshihara\",\"doi\":\"10.1109/EH.2000.869363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new logic circuit design methodology for kernel-based pattern recognition hardware using a genetic algorithm. In the proposed design methodology, pattern data are transformed into the truth tables and the truth tables are evolved to represent kernels in the discrimination functions for pattern recognition. The evolved truth tables are then synthesized to logic circuits. Because of this data direct implementation approach, no floating point numerical circuits are required and the intrinsic parallelism in the pattern data set is embedded into the circuits. Consequently, high speed recognition systems can be realized with acceptable small circuit size. We have applied this methodology to the image recognition and the sonar spectrum recognition tasks, and implemented them onto the newly developed FPGA-based reconfigurable pattern recognition board. The developed system demonstrates higher recognition accuracy and much faster processing speed than the conventional approaches.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种基于遗传算法的基于核的模式识别硬件逻辑电路设计方法。在该设计方法中,将模式数据转换为真值表,并将真值表演化为模式识别判别函数中的核。进化的真值表然后被合成到逻辑电路中。由于这种数据直接实现方法,不需要浮点数值电路,并且模式数据集的内在并行性嵌入到电路中。因此,高速识别系统可以实现与可接受的小电路尺寸。我们将该方法应用于图像识别和声纳频谱识别任务,并将其实现在新开发的基于fpga的可重构模式识别板上。与传统方法相比,该系统具有更高的识别精度和更快的处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-based pattern recognition hardware: its design methodology using evolved truth tables
We propose a new logic circuit design methodology for kernel-based pattern recognition hardware using a genetic algorithm. In the proposed design methodology, pattern data are transformed into the truth tables and the truth tables are evolved to represent kernels in the discrimination functions for pattern recognition. The evolved truth tables are then synthesized to logic circuits. Because of this data direct implementation approach, no floating point numerical circuits are required and the intrinsic parallelism in the pattern data set is embedded into the circuits. Consequently, high speed recognition systems can be realized with acceptable small circuit size. We have applied this methodology to the image recognition and the sonar spectrum recognition tasks, and implemented them onto the newly developed FPGA-based reconfigurable pattern recognition board. The developed system demonstrates higher recognition accuracy and much faster processing speed than the conventional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kernel-based pattern recognition hardware: its design methodology using evolved truth tables Design of decentralized controllers for self-reconfigurable modular robots using genetic programming Scalable evolvable hardware applied to road image recognition State of the art: an evolving FPGA-based board for handwritten-digit recognition Multiobjective optimization techniques: a study of the energy minimization method and its application to the synthesis of ota amplifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1