F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sánchez-Solano
{"title":"用监督学习算法调整复杂模糊系统","authors":"F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sánchez-Solano","doi":"10.1109/FUZZ.2003.1209366","DOIUrl":null,"url":null,"abstract":"Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tuning process automatically, and describes a CAD tool, named xfsl, which allows applying a wide set of these approaches: (a) a large number of supervised learning algorithms; (b) different processes to simplify the learned system; (c) tuning only specific parameters of the system; (d) the ability to tune hierarchical fuzzy systems, systems with continuous output (like fuzzy controller) as well as with categorical output (like fuzzy classifiers), and even systems that employ user-defined fuzzy functions; and, finally, (e) the ability to employ this tuning within the design flow of a fuzzy system, because xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Tuning complex fuzzy systems by supervised learning algorithms\",\"authors\":\"F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sánchez-Solano\",\"doi\":\"10.1109/FUZZ.2003.1209366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tuning process automatically, and describes a CAD tool, named xfsl, which allows applying a wide set of these approaches: (a) a large number of supervised learning algorithms; (b) different processes to simplify the learned system; (c) tuning only specific parameters of the system; (d) the ability to tune hierarchical fuzzy systems, systems with continuous output (like fuzzy controller) as well as with categorical output (like fuzzy classifiers), and even systems that employ user-defined fuzzy functions; and, finally, (e) the ability to employ this tuning within the design flow of a fuzzy system, because xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1209366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning complex fuzzy systems by supervised learning algorithms
Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tuning process automatically, and describes a CAD tool, named xfsl, which allows applying a wide set of these approaches: (a) a large number of supervised learning algorithms; (b) different processes to simplify the learned system; (c) tuning only specific parameters of the system; (d) the ability to tune hierarchical fuzzy systems, systems with continuous output (like fuzzy controller) as well as with categorical output (like fuzzy classifiers), and even systems that employ user-defined fuzzy functions; and, finally, (e) the ability to employ this tuning within the design flow of a fuzzy system, because xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0.