{"title":"用表面切片探索弯曲的解剖结构","authors":"Laurent Saroul, Sebastian Gerlach, R. Hersch","doi":"10.1109/VISUAL.2003.1250351","DOIUrl":null,"url":null,"abstract":"The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Exploring curved anatomic structures with surface sections\",\"authors\":\"Laurent Saroul, Sebastian Gerlach, R. Hersch\",\"doi\":\"10.1109/VISUAL.2003.1250351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring curved anatomic structures with surface sections
The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.