用表面切片探索弯曲的解剖结构

Laurent Saroul, Sebastian Gerlach, R. Hersch
{"title":"用表面切片探索弯曲的解剖结构","authors":"Laurent Saroul, Sebastian Gerlach, R. Hersch","doi":"10.1109/VISUAL.2003.1250351","DOIUrl":null,"url":null,"abstract":"The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Exploring curved anatomic structures with surface sections\",\"authors\":\"Laurent Saroul, Sebastian Gerlach, R. Hersch\",\"doi\":\"10.1109/VISUAL.2003.1250351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

从体图像中提取平面切片是检测和可视化解剖结构最常用的技术。我们建议将平面截面的概念推广到曲面截面(自由曲面)的提取。与平面切片相比,弯曲截面可以很容易地跟踪管状结构和器官如主动脉或结肠的轨迹。它们可以从3D体中提取,显示为3D视图,并可能被平面化。弯曲截面的平坦化允许检查解剖结构及其邻域之间的空间复杂关系。它们还允许沿着特定方向进行测量。为了便于自由曲面的交互规范,用户可以在体内实时导航并选择表面控制点所在的切片。通过将边界曲线显示为由解剖器官、平面切片和可能的自由曲面切片组成的3D视图中的圆柱形标记,可以提供即时反馈。曲面截面的提取是一项附加服务,可以通过Java applet在线获得(http://visiblehuman.epfl.ch)。它可以作为一种先进的解剖探索和教学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring curved anatomic structures with surface sections
The extraction of planar sections from volume images is the most commonly used technique for inspecting and visualizing anatomic structures. We propose to generalize the concept of planar section to the extraction of curved cross-sections (free form surfaces). Compared with planar slices, curved cross-sections may easily follow the trajectory of tubular structures and organs such as the aorta or the colon. They may be extracted from a 3D volume, displayed as a 3D view and possibly flattened. Flattening of curved cross-sections allows to inspect spatially complex relationship between anatomic structures and their neighborhood. They also allow to carry out measurements along a specific orientation. For the purpose of facilitating the interactive specification of free form surfaces, users may navigate in real time within the body and select the slices on which the surface control points will be positioned. Immediate feedback is provided by displaying boundary curves as cylindrical markers within a 3D view composed of anatomic organs, planar slices and possibly free form surface sections. Extraction of curved surface sections is an additional service that is available online as a Java applet (http://visiblehuman.epfl.ch). It may be used as an advanced tool for exploring and teaching anatomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voxels on fire [computer animation] Chameleon: an interactive texture-based rendering framework for visualizing three-dimensional vector fields Fast volume segmentation with simultaneous visualization using programmable graphics hardware Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data Visualization experiences and issues in deep space exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1