{"title":"基于smt的Scala谓词限定类型检查","authors":"G. Schmid, Viktor Kunčak","doi":"10.1145/2998392.2998398","DOIUrl":null,"url":null,"abstract":"We present *qualified types* for Scala, a form of refinement types adapted to the Scala language. Qualified types allow users to refine base types and classes using predicate expressions. We implemented a type checker for qualified types that is embedded in Scala's next-generation compiler Dotty and delegates constraint checking to an SMT solver. Our system supports many of Scala's functional as well as its object-oriented constructs. To propagate user-provided qualifier ascriptions we utilize both Scala's own type system and an incomplete, but effective qualifier inference algorithm. Our evaluation shows that for a series of examples exerting various of Scala's language features, the additional compile-time overhead is manageable. By combining these features we show that one can verify essential safety properties such as static bounds-checks while retaining several of Scala's advanced features.","PeriodicalId":269542,"journal":{"name":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SMT-based checking of predicate-qualified types for Scala\",\"authors\":\"G. Schmid, Viktor Kunčak\",\"doi\":\"10.1145/2998392.2998398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present *qualified types* for Scala, a form of refinement types adapted to the Scala language. Qualified types allow users to refine base types and classes using predicate expressions. We implemented a type checker for qualified types that is embedded in Scala's next-generation compiler Dotty and delegates constraint checking to an SMT solver. Our system supports many of Scala's functional as well as its object-oriented constructs. To propagate user-provided qualifier ascriptions we utilize both Scala's own type system and an incomplete, but effective qualifier inference algorithm. Our evaluation shows that for a series of examples exerting various of Scala's language features, the additional compile-time overhead is manageable. By combining these features we show that one can verify essential safety properties such as static bounds-checks while retaining several of Scala's advanced features.\",\"PeriodicalId\":269542,\"journal\":{\"name\":\"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2998392.2998398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2998392.2998398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SMT-based checking of predicate-qualified types for Scala
We present *qualified types* for Scala, a form of refinement types adapted to the Scala language. Qualified types allow users to refine base types and classes using predicate expressions. We implemented a type checker for qualified types that is embedded in Scala's next-generation compiler Dotty and delegates constraint checking to an SMT solver. Our system supports many of Scala's functional as well as its object-oriented constructs. To propagate user-provided qualifier ascriptions we utilize both Scala's own type system and an incomplete, but effective qualifier inference algorithm. Our evaluation shows that for a series of examples exerting various of Scala's language features, the additional compile-time overhead is manageable. By combining these features we show that one can verify essential safety properties such as static bounds-checks while retaining several of Scala's advanced features.