基于相位otdr的光纤分布式声传感系统人工智能模式识别

H. Wen, Zhaoqiang Peng, Jianan Jian, Mohan Wang, Hu Liu, Z.-H. Mao, P. Ohodnicki, Kevin P. Chen
{"title":"基于相位otdr的光纤分布式声传感系统人工智能模式识别","authors":"H. Wen, Zhaoqiang Peng, Jianan Jian, Mohan Wang, Hu Liu, Z.-H. Mao, P. Ohodnicki, Kevin P. Chen","doi":"10.1109/ACP.2018.8595809","DOIUrl":null,"url":null,"abstract":"In this paper, we present an integrated approach to improve measurement efficacy of fiber optical distributed acoustic sensing (DAS) systems using a combined approach of ultrafast laser manufacturing and neural network pattern recognition.","PeriodicalId":431579,"journal":{"name":"2018 Asia Communications and Photonics Conference (ACP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Artificial Intelligent Pattern Recognition for Optical Fiber Distributed Acoustic Sensing Systems Based on Phase-OTDR\",\"authors\":\"H. Wen, Zhaoqiang Peng, Jianan Jian, Mohan Wang, Hu Liu, Z.-H. Mao, P. Ohodnicki, Kevin P. Chen\",\"doi\":\"10.1109/ACP.2018.8595809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an integrated approach to improve measurement efficacy of fiber optical distributed acoustic sensing (DAS) systems using a combined approach of ultrafast laser manufacturing and neural network pattern recognition.\",\"PeriodicalId\":431579,\"journal\":{\"name\":\"2018 Asia Communications and Photonics Conference (ACP)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia Communications and Photonics Conference (ACP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACP.2018.8595809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia Communications and Photonics Conference (ACP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACP.2018.8595809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种利用超快激光制造和神经网络模式识别相结合的方法来提高光纤分布式声传感(DAS)系统的测量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligent Pattern Recognition for Optical Fiber Distributed Acoustic Sensing Systems Based on Phase-OTDR
In this paper, we present an integrated approach to improve measurement efficacy of fiber optical distributed acoustic sensing (DAS) systems using a combined approach of ultrafast laser manufacturing and neural network pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Receiver Sensitivity Improvement of Layered-ACO-OFDM System Enabled by Layered-DFT/OCT Precoding Technique Multi-dimensional Resources Assignment for Various Demands with Flexible Window in SDM-EONs Omnidirectional bending sensor based on fiber Bragg gratings inscribed in a seven-core fiber Experimental Demonstration of Flexible Hardware Acceleration in 5G MEC Infrastructure Capacity of Multi-Core Fiber with Maximum-Ratio Combining Optical Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1