使用强化学习的住宅需求响应

D. O'Neill, M. Levorato, A. Goldsmith, U. Mitra
{"title":"使用强化学习的住宅需求响应","authors":"D. O'Neill, M. Levorato, A. Goldsmith, U. Mitra","doi":"10.1109/SMARTGRID.2010.5622078","DOIUrl":null,"url":null,"abstract":"We present a novel energy management system for residential demand response. The algorithm, named CAES, reduces residential energy costs and smooths energy usage. CAES is an online learning application that implicitly estimates the impact of future energy prices and of consumer decisions on long term costs and schedules residential device usage. CAES models both energy prices and residential device usage as Markov, but does not assume knowledge of the structure or transition probabilities of these Markov chains. CAES learns continuously and adapts to individual consumer preferences and pricing modifications over time. In numerical simulations CAES reduced average end-user financial costs from $16\\%$ to $40\\%$ with respect to a price-unaware energy allocation.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"291","resultStr":"{\"title\":\"Residential Demand Response Using Reinforcement Learning\",\"authors\":\"D. O'Neill, M. Levorato, A. Goldsmith, U. Mitra\",\"doi\":\"10.1109/SMARTGRID.2010.5622078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel energy management system for residential demand response. The algorithm, named CAES, reduces residential energy costs and smooths energy usage. CAES is an online learning application that implicitly estimates the impact of future energy prices and of consumer decisions on long term costs and schedules residential device usage. CAES models both energy prices and residential device usage as Markov, but does not assume knowledge of the structure or transition probabilities of these Markov chains. CAES learns continuously and adapts to individual consumer preferences and pricing modifications over time. In numerical simulations CAES reduced average end-user financial costs from $16\\\\%$ to $40\\\\%$ with respect to a price-unaware energy allocation.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"291\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 291

摘要

我们提出了一种新的住宅需求响应能源管理系统。该算法被命名为CAES,降低了住宅能源成本,并使能源使用更加平稳。CAES是一个在线学习应用程序,它隐式地估计未来能源价格和消费者决策对长期成本的影响,并计划住宅设备的使用。CAES将能源价格和住宅设备使用作为马尔可夫模型,但不假设这些马尔可夫链的结构或转移概率的知识。CAES不断学习并适应消费者的个人偏好和价格变化。在数值模拟中,CAES将最终用户的平均财务成本从16%美元降低到40%美元,这与价格无关的能源分配有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residential Demand Response Using Reinforcement Learning
We present a novel energy management system for residential demand response. The algorithm, named CAES, reduces residential energy costs and smooths energy usage. CAES is an online learning application that implicitly estimates the impact of future energy prices and of consumer decisions on long term costs and schedules residential device usage. CAES models both energy prices and residential device usage as Markov, but does not assume knowledge of the structure or transition probabilities of these Markov chains. CAES learns continuously and adapts to individual consumer preferences and pricing modifications over time. In numerical simulations CAES reduced average end-user financial costs from $16\%$ to $40\%$ with respect to a price-unaware energy allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum for Smart Grid: Policy Recommendations Enabling Current and Future Applications Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures Quality of Service Networking for Smart Grid Distribution Monitoring The POWER of Networking: How Networking Can Help Power Management Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1