基于矢量近似消息传递的OTFS系统迭代接收机

N. Wu, Yikun Zhang, Yunsi Ma, Bin Li, W. Yuan
{"title":"基于矢量近似消息传递的OTFS系统迭代接收机","authors":"N. Wu, Yikun Zhang, Yunsi Ma, Bin Li, W. Yuan","doi":"10.1109/ICCCWorkshops52231.2021.9538876","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an iterative message passing receiver based on factor graph for orthogonal time frequency space (OTFS) systems over doubly selective channels. By factorizing the joint probability of the data symbols and the received signals, we construct a loop-free factor graph with vector-valued nodes. Then, vector approximate message passing (VAMP) is employed to derive message updating expressions of variables on factor graph. To improve the accuracy of symbol detection, we vectorize the scalar variance terms of VAMP. Based on the singular value decomposition of block circulant channel matrix of OTFS system, we introduce the average approximation to circumvent the matrix inversion operation and then develop a low-complexity VAMP-based algorithm. Simulation results demonstrate the effectiveness of the proposed algorithms, which outperform the existing minimum mean square error algorithm and the message passing algorithm in terms of bit error rate (BER) performance.","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vector Approximate Message Passing Based Iterative Receiver for OTFS System\",\"authors\":\"N. Wu, Yikun Zhang, Yunsi Ma, Bin Li, W. Yuan\",\"doi\":\"10.1109/ICCCWorkshops52231.2021.9538876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an iterative message passing receiver based on factor graph for orthogonal time frequency space (OTFS) systems over doubly selective channels. By factorizing the joint probability of the data symbols and the received signals, we construct a loop-free factor graph with vector-valued nodes. Then, vector approximate message passing (VAMP) is employed to derive message updating expressions of variables on factor graph. To improve the accuracy of symbol detection, we vectorize the scalar variance terms of VAMP. Based on the singular value decomposition of block circulant channel matrix of OTFS system, we introduce the average approximation to circumvent the matrix inversion operation and then develop a low-complexity VAMP-based algorithm. Simulation results demonstrate the effectiveness of the proposed algorithms, which outperform the existing minimum mean square error algorithm and the message passing algorithm in terms of bit error rate (BER) performance.\",\"PeriodicalId\":335240,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对正交时频空间(OTFS)系统的双选择信道,提出了一种基于因子图的迭代消息传递接收机。通过分解数据符号与接收信号的联合概率,构造了一个具有向量值节点的无环因子图。然后,利用向量近似消息传递(VAMP)导出因子图上变量的消息更新表达式。为了提高符号检测的准确性,我们对VAMP的标量方差项进行了向量化。在OTFS系统块循环信道矩阵奇异值分解的基础上,引入平均逼近来规避矩阵反演运算,并提出了一种基于vvamp的低复杂度算法。仿真结果证明了所提算法的有效性,在误码率(BER)方面优于现有的最小均方误差算法和消息传递算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vector Approximate Message Passing Based Iterative Receiver for OTFS System
In this paper, we develop an iterative message passing receiver based on factor graph for orthogonal time frequency space (OTFS) systems over doubly selective channels. By factorizing the joint probability of the data symbols and the received signals, we construct a loop-free factor graph with vector-valued nodes. Then, vector approximate message passing (VAMP) is employed to derive message updating expressions of variables on factor graph. To improve the accuracy of symbol detection, we vectorize the scalar variance terms of VAMP. Based on the singular value decomposition of block circulant channel matrix of OTFS system, we introduce the average approximation to circumvent the matrix inversion operation and then develop a low-complexity VAMP-based algorithm. Simulation results demonstrate the effectiveness of the proposed algorithms, which outperform the existing minimum mean square error algorithm and the message passing algorithm in terms of bit error rate (BER) performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Link Reliability Prediction for Long-range Underwater Acoustic Communications between Gliders A Review of 3GPP Release 18 on Smart Energy and Infrastructure Analysis on Power Configuration in 5G Co-construction and Sharing Network Application of Passive Acoustic Technology in the Monitoring of Abalone’s Feeding Behavior Ultra-Compact Dual-Polarized Dipole Antenna for Ultra-Massive MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1