能源社区分散式强化学习控制策略的标杆分析

Niklas Ebell, M. Pruckner
{"title":"能源社区分散式强化学习控制策略的标杆分析","authors":"Niklas Ebell, M. Pruckner","doi":"10.1109/SmartGridComm51999.2021.9632323","DOIUrl":null,"url":null,"abstract":"The energy transition towards a more sustainable, secure and affordable electrical power system consisting of high shares of renewable energy sources increases the energy system's complexity. It creates an energy system in a more decentralized pattern with many more stakeholders involved. In this context, new data-driven operation control strategies play an important role in order to provide fast decision support and a better coordination of electrical assets in the distribution grid. In this paper, we evaluate a novel Multi-Agent Reinforcement Learning approach which focuses on cooperative agents with only local state information and aim to balance the electricity generation and consumption of an energy community consisting of ten households. This approach is compared to a rule-based and an optimal control policy. Results show that independent Q-learner achieve performance 35 % better than rule-based control and compensate high computational effort with adaptability, simplicity in communication requirements and respect of data-privacy.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking a Decentralized Reinforcement Learning Control Strategy for an Energy Community\",\"authors\":\"Niklas Ebell, M. Pruckner\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy transition towards a more sustainable, secure and affordable electrical power system consisting of high shares of renewable energy sources increases the energy system's complexity. It creates an energy system in a more decentralized pattern with many more stakeholders involved. In this context, new data-driven operation control strategies play an important role in order to provide fast decision support and a better coordination of electrical assets in the distribution grid. In this paper, we evaluate a novel Multi-Agent Reinforcement Learning approach which focuses on cooperative agents with only local state information and aim to balance the electricity generation and consumption of an energy community consisting of ten households. This approach is compared to a rule-based and an optimal control policy. Results show that independent Q-learner achieve performance 35 % better than rule-based control and compensate high computational effort with adaptability, simplicity in communication requirements and respect of data-privacy.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能源向更可持续、更安全、更负担得起的电力系统过渡,其中可再生能源占很大比例,这增加了能源系统的复杂性。它创造了一个更加分散的能源系统,有更多的利益相关者参与其中。在这种情况下,新的数据驱动运行控制策略将发挥重要作用,为配电网提供快速决策支持和更好的电力资产协调。在本文中,我们评估了一种新的多智能体强化学习方法,该方法专注于仅具有局部状态信息的合作智能体,旨在平衡由十个家庭组成的能源社区的发电和消费。将该方法与基于规则的控制策略和最优控制策略进行了比较。结果表明,独立Q-learner的性能比基于规则的控制提高35%,并以适应性、通信要求的简单性和对数据隐私的尊重来补偿高计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking a Decentralized Reinforcement Learning Control Strategy for an Energy Community
The energy transition towards a more sustainable, secure and affordable electrical power system consisting of high shares of renewable energy sources increases the energy system's complexity. It creates an energy system in a more decentralized pattern with many more stakeholders involved. In this context, new data-driven operation control strategies play an important role in order to provide fast decision support and a better coordination of electrical assets in the distribution grid. In this paper, we evaluate a novel Multi-Agent Reinforcement Learning approach which focuses on cooperative agents with only local state information and aim to balance the electricity generation and consumption of an energy community consisting of ten households. This approach is compared to a rule-based and an optimal control policy. Results show that independent Q-learner achieve performance 35 % better than rule-based control and compensate high computational effort with adaptability, simplicity in communication requirements and respect of data-privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1