{"title":"任意取向和应变对周围栅极晶体管的影响","authors":"I. M. Tienda-Luna, F. Ruiz, A. Godoy, F. Gámiz","doi":"10.1109/IWCE.2009.5091108","DOIUrl":null,"url":null,"abstract":"A variety of techniques can be employed to increase the drive current in CMOS transistors. In this paper, we study the effects of using different wafer orientations and strain methods in surrounding gate transistors. Specifically, we focus on Quantum Electron Density and mobility. A significant modification of both magnitudes is to be expected, due to the changes caused in the effective mass tensor and in the conduction band edge position.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Arbitrary Orientation and Strain on Surrounding Gate Transistors\",\"authors\":\"I. M. Tienda-Luna, F. Ruiz, A. Godoy, F. Gámiz\",\"doi\":\"10.1109/IWCE.2009.5091108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of techniques can be employed to increase the drive current in CMOS transistors. In this paper, we study the effects of using different wafer orientations and strain methods in surrounding gate transistors. Specifically, we focus on Quantum Electron Density and mobility. A significant modification of both magnitudes is to be expected, due to the changes caused in the effective mass tensor and in the conduction band edge position.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Arbitrary Orientation and Strain on Surrounding Gate Transistors
A variety of techniques can be employed to increase the drive current in CMOS transistors. In this paper, we study the effects of using different wafer orientations and strain methods in surrounding gate transistors. Specifically, we focus on Quantum Electron Density and mobility. A significant modification of both magnitudes is to be expected, due to the changes caused in the effective mass tensor and in the conduction band edge position.