相对湿度为0%和40%时,532 nm和1064 nm下电子束蒸发HfO2/SiO2增透涂层的激光损伤比较

Laser Damage Pub Date : 2021-09-01 DOI:10.1117/12.2598613
E. Field, B. Galloway, M. Geissel, D. Kletecka, P. Rambo, I. Smith, J. Porter
{"title":"相对湿度为0%和40%时,532 nm和1064 nm下电子束蒸发HfO2/SiO2增透涂层的激光损伤比较","authors":"E. Field, B. Galloway, M. Geissel, D. Kletecka, P. Rambo, I. Smith, J. Porter","doi":"10.1117/12.2598613","DOIUrl":null,"url":null,"abstract":"Antireflection coatings, containing alternating layers of hafnia (HfO2) and silica (SiO2), were deposited using electron beam (e-beam) evaporation for use in laser operations at 532 nm and 1064 nm in the nanosecond regime. The e-beam evaporation process produces coatings that are porous and therefore absorb water from the ambient environment. Consequently, humidity may affect the spectral performance of the coatings, and the laser damage resistance of the coatings may be affected as well. The purpose of this study was to compare the laser-induced damage thresholds of the antireflection coatings measured in the ambient environment at 0% and 40.5% relative humidity. At 1064 nm, the laserinduced damage thresholds at 0% and 40.5% relative humidity were almost the same. However, at 532 nm, the laserinduced damage thresholds at 40.5% relative humidity were nearly twice as high as those measured at 0% relative humidity. This indicates that humidity can inhibit lower-fluence precursors that would lead to laser damage at 532 nm in the nanosecond regime, thereby improving the durability of the coatings in a humid environment.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser damage comparisons of E-beam evaporated HfO2/SiO2 antireflection coatings at 0% and 40% relative humidity for 532 nm and 1064 nm\",\"authors\":\"E. Field, B. Galloway, M. Geissel, D. Kletecka, P. Rambo, I. Smith, J. Porter\",\"doi\":\"10.1117/12.2598613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antireflection coatings, containing alternating layers of hafnia (HfO2) and silica (SiO2), were deposited using electron beam (e-beam) evaporation for use in laser operations at 532 nm and 1064 nm in the nanosecond regime. The e-beam evaporation process produces coatings that are porous and therefore absorb water from the ambient environment. Consequently, humidity may affect the spectral performance of the coatings, and the laser damage resistance of the coatings may be affected as well. The purpose of this study was to compare the laser-induced damage thresholds of the antireflection coatings measured in the ambient environment at 0% and 40.5% relative humidity. At 1064 nm, the laserinduced damage thresholds at 0% and 40.5% relative humidity were almost the same. However, at 532 nm, the laserinduced damage thresholds at 40.5% relative humidity were nearly twice as high as those measured at 0% relative humidity. This indicates that humidity can inhibit lower-fluence precursors that would lead to laser damage at 532 nm in the nanosecond regime, thereby improving the durability of the coatings in a humid environment.\",\"PeriodicalId\":202227,\"journal\":{\"name\":\"Laser Damage\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2598613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2598613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用电子束蒸发法制备了含半氧化铪(HfO2)和二氧化硅(SiO2)交替层的增透涂层,用于532 nm和1064 nm的纳秒级激光操作。电子束蒸发过程产生多孔涂层,因此可以从周围环境中吸收水分。因此,湿度会影响涂层的光谱性能,也会影响涂层的抗激光损伤能力。本研究的目的是比较在0%和40.5%相对湿度环境下测得的增透涂层的激光损伤阈值。在1064 nm处,0%和40.5%相对湿度下的激光损伤阈值几乎相同。然而,在532 nm处,相对湿度为40.5%时的激光诱导损伤阈值几乎是相对湿度为0%时的两倍。这表明湿度可以抑制导致532 nm激光损伤的低通量前驱体,从而提高涂层在潮湿环境中的耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser damage comparisons of E-beam evaporated HfO2/SiO2 antireflection coatings at 0% and 40% relative humidity for 532 nm and 1064 nm
Antireflection coatings, containing alternating layers of hafnia (HfO2) and silica (SiO2), were deposited using electron beam (e-beam) evaporation for use in laser operations at 532 nm and 1064 nm in the nanosecond regime. The e-beam evaporation process produces coatings that are porous and therefore absorb water from the ambient environment. Consequently, humidity may affect the spectral performance of the coatings, and the laser damage resistance of the coatings may be affected as well. The purpose of this study was to compare the laser-induced damage thresholds of the antireflection coatings measured in the ambient environment at 0% and 40.5% relative humidity. At 1064 nm, the laserinduced damage thresholds at 0% and 40.5% relative humidity were almost the same. However, at 532 nm, the laserinduced damage thresholds at 40.5% relative humidity were nearly twice as high as those measured at 0% relative humidity. This indicates that humidity can inhibit lower-fluence precursors that would lead to laser damage at 532 nm in the nanosecond regime, thereby improving the durability of the coatings in a humid environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All-glass metasurface laser optics for lensing, antireflections, and waveplates Laser-induced damage of dielectric-enhanced surface-modified single-point-diamond-turned Al-6061 multiband mirrors Optical damage considerations in the design of the matter in extreme condition upgrade (MEC-U) laser systems Broadband, 920-nm mirror thin film damage competition Temporally and spatially resolved photoluminescence of laser-induced damage sites of fused silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1