{"title":"稀疏传感器数据的可计算社会模式","authors":"Dinh Q. Phung, Brett Adams, S. Venkatesh","doi":"10.1145/1367798.1367810","DOIUrl":null,"url":null,"abstract":"We present a computational framework to automatically discover high-order temporal social patterns from very noisy and sparse location data. We introduce the concept of social footprint and present a method to construct a codebook, enabling the transformation of raw sensor data into a collection of social pages. Each page captures social activities of a user over regular time period, and represented as a sequence of encoded footprints. Computable patterns are then defined as repeated structures found in these sequences. To do so, we appeal to modeling tools in document analysis and propose a Latent Social theme Dirichlet Allocation (LSDA) model -- a version of the Ngram topic model in [6] with extra modeling of personal context. This model can be viewed as a Bayesian clustering method, jointly discovering temporal collocation of footprints and exploiting statistical strength across social pages, to automatically discovery high-order patterns. Alternatively, it can be viewed as a dimensionality reduction method where the reduced latent space can be interpreted as the hidden social 'theme' -- a more abstract perception of user's daily activities. Applying this framework to a real-world noisy dataset collected over 1.5 years, we show that many useful and interesting patterns can be computed. Interpretable social themes can also be deduced from the discovered patterns.","PeriodicalId":320466,"journal":{"name":"International Workshop on Location and the Web","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Computable social patterns from sparse sensor data\",\"authors\":\"Dinh Q. Phung, Brett Adams, S. Venkatesh\",\"doi\":\"10.1145/1367798.1367810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computational framework to automatically discover high-order temporal social patterns from very noisy and sparse location data. We introduce the concept of social footprint and present a method to construct a codebook, enabling the transformation of raw sensor data into a collection of social pages. Each page captures social activities of a user over regular time period, and represented as a sequence of encoded footprints. Computable patterns are then defined as repeated structures found in these sequences. To do so, we appeal to modeling tools in document analysis and propose a Latent Social theme Dirichlet Allocation (LSDA) model -- a version of the Ngram topic model in [6] with extra modeling of personal context. This model can be viewed as a Bayesian clustering method, jointly discovering temporal collocation of footprints and exploiting statistical strength across social pages, to automatically discovery high-order patterns. Alternatively, it can be viewed as a dimensionality reduction method where the reduced latent space can be interpreted as the hidden social 'theme' -- a more abstract perception of user's daily activities. Applying this framework to a real-world noisy dataset collected over 1.5 years, we show that many useful and interesting patterns can be computed. Interpretable social themes can also be deduced from the discovered patterns.\",\"PeriodicalId\":320466,\"journal\":{\"name\":\"International Workshop on Location and the Web\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Location and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1367798.1367810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Location and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1367798.1367810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computable social patterns from sparse sensor data
We present a computational framework to automatically discover high-order temporal social patterns from very noisy and sparse location data. We introduce the concept of social footprint and present a method to construct a codebook, enabling the transformation of raw sensor data into a collection of social pages. Each page captures social activities of a user over regular time period, and represented as a sequence of encoded footprints. Computable patterns are then defined as repeated structures found in these sequences. To do so, we appeal to modeling tools in document analysis and propose a Latent Social theme Dirichlet Allocation (LSDA) model -- a version of the Ngram topic model in [6] with extra modeling of personal context. This model can be viewed as a Bayesian clustering method, jointly discovering temporal collocation of footprints and exploiting statistical strength across social pages, to automatically discovery high-order patterns. Alternatively, it can be viewed as a dimensionality reduction method where the reduced latent space can be interpreted as the hidden social 'theme' -- a more abstract perception of user's daily activities. Applying this framework to a real-world noisy dataset collected over 1.5 years, we show that many useful and interesting patterns can be computed. Interpretable social themes can also be deduced from the discovered patterns.