异构平台中周期性实时任务的高效容错调度算法

Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang
{"title":"异构平台中周期性实时任务的高效容错调度算法","authors":"Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang","doi":"10.1109/ISORC.2013.6913213","DOIUrl":null,"url":null,"abstract":"Fault-tolerant real-time scheduling algorithm is one of the most important means to ensure the timeliness and high availability characteristics of fault-tolerant real-time systems. Existing scheduling models for periodic real-time task in heterogeneous platforms typically require the number of processors in the systems to be determined in advance; hence prohibit the scalability and the performance of distributed systems. The algorithms based on these models also require a large number of schedubility tests which lead to long execution time. To address these problems, we propose a primary and backup replica partition based fault-tolerant scheduling algorithm (PBPFT) based on a scalable scheduling model using heterogeneity that does not have to determine the scale of the distributed system in advance. The PBPFT approach also takes advantage of backup copy overlapping and phasing delay techniques to minimize system redundancy, and adopts the processor grouping technique to simplify algorithm complexity. Comprehensive experiments are conducted, and the results validate high resource utilization and commendable performance of our proposed approach.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An efficient fault-tolerant scheduling algorithm for periodic real-time tasks in heterogeneous platforms\",\"authors\":\"Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang\",\"doi\":\"10.1109/ISORC.2013.6913213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-tolerant real-time scheduling algorithm is one of the most important means to ensure the timeliness and high availability characteristics of fault-tolerant real-time systems. Existing scheduling models for periodic real-time task in heterogeneous platforms typically require the number of processors in the systems to be determined in advance; hence prohibit the scalability and the performance of distributed systems. The algorithms based on these models also require a large number of schedubility tests which lead to long execution time. To address these problems, we propose a primary and backup replica partition based fault-tolerant scheduling algorithm (PBPFT) based on a scalable scheduling model using heterogeneity that does not have to determine the scale of the distributed system in advance. The PBPFT approach also takes advantage of backup copy overlapping and phasing delay techniques to minimize system redundancy, and adopts the processor grouping technique to simplify algorithm complexity. Comprehensive experiments are conducted, and the results validate high resource utilization and commendable performance of our proposed approach.\",\"PeriodicalId\":330873,\"journal\":{\"name\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2013.6913213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2013.6913213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

容错实时调度算法是保证容错实时系统时效性和高可用性的重要手段之一。现有的异构平台周期性实时任务调度模型通常需要预先确定系统中的处理器数量;因此限制了分布式系统的可伸缩性和性能。基于这些模型的算法也需要进行大量的可调度性测试,导致执行时间长。为了解决这些问题,我们提出了一种基于主备份副本分区的容错调度算法(PBPFT),该算法基于一种可扩展的调度模型,该模型使用异构性,无需预先确定分布式系统的规模。PBPFT方法还利用备份副本重叠和相位延迟技术来减少系统冗余,并采用处理器分组技术来简化算法复杂度。实验结果表明,该方法具有较高的资源利用率和良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient fault-tolerant scheduling algorithm for periodic real-time tasks in heterogeneous platforms
Fault-tolerant real-time scheduling algorithm is one of the most important means to ensure the timeliness and high availability characteristics of fault-tolerant real-time systems. Existing scheduling models for periodic real-time task in heterogeneous platforms typically require the number of processors in the systems to be determined in advance; hence prohibit the scalability and the performance of distributed systems. The algorithms based on these models also require a large number of schedubility tests which lead to long execution time. To address these problems, we propose a primary and backup replica partition based fault-tolerant scheduling algorithm (PBPFT) based on a scalable scheduling model using heterogeneity that does not have to determine the scale of the distributed system in advance. The PBPFT approach also takes advantage of backup copy overlapping and phasing delay techniques to minimize system redundancy, and adopts the processor grouping technique to simplify algorithm complexity. Comprehensive experiments are conducted, and the results validate high resource utilization and commendable performance of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F6COM: A component model for resource-constrained and dynamic space-based computing environments A new mobile agent based scheme for self-organizing real-time service dissemination and collection in mobile ad hoc networks Semi-fixed-priority scheduling with multiple mandatory parts Towards intelligent services in smart home environments Energy minimization for checkpointing-based approach to guaranteeing real-time systems reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1