英国地区生产总值趋势矩与朴素方法的比较

Umi Habibah, Rizka Rizqi Robby, M. N. Qomaruddin
{"title":"英国地区生产总值趋势矩与朴素方法的比较","authors":"Umi Habibah, Rizka Rizqi Robby, M. N. Qomaruddin","doi":"10.29303/emj.v5i1.121","DOIUrl":null,"url":null,"abstract":"Gross Regional Domestic Product (GRDP) expenditure describes the final result of the production process within a region's territorial boundaries. Knowing GRDP expenses can describe the level of welfare economics, develop policy formulation, taxation, and export-import study. In estimating the GRDP of expenses in the following year, it is necessary to have a method of calculating systematically, one of which is forecasting. Some research showed that trend moment method and naive method produce higher accuracy than other methods. This method can be used in long-term forecasting and does not require the amount of data to be odd or even. The method is compared to get one of the best methods and has the highest accuracy value using MAPE calculation. The smaller MAPE, the better the forecasting accuracy. Comparing the two methods shows that the Naive method is the best method based on the MAPE criteria with an accuracy of 0.976 %. The result of data forecasting shows a decrease in GRDP Blitar Regency year 2021 and 2022.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Trend Moment and Naive Methods in Forecasting Gross Regional Domestic Product in Blitar Regency\",\"authors\":\"Umi Habibah, Rizka Rizqi Robby, M. N. Qomaruddin\",\"doi\":\"10.29303/emj.v5i1.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gross Regional Domestic Product (GRDP) expenditure describes the final result of the production process within a region's territorial boundaries. Knowing GRDP expenses can describe the level of welfare economics, develop policy formulation, taxation, and export-import study. In estimating the GRDP of expenses in the following year, it is necessary to have a method of calculating systematically, one of which is forecasting. Some research showed that trend moment method and naive method produce higher accuracy than other methods. This method can be used in long-term forecasting and does not require the amount of data to be odd or even. The method is compared to get one of the best methods and has the highest accuracy value using MAPE calculation. The smaller MAPE, the better the forecasting accuracy. Comparing the two methods shows that the Naive method is the best method based on the MAPE criteria with an accuracy of 0.976 %. The result of data forecasting shows a decrease in GRDP Blitar Regency year 2021 and 2022.\",\"PeriodicalId\":281429,\"journal\":{\"name\":\"EIGEN MATHEMATICS JOURNAL\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EIGEN MATHEMATICS JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/emj.v5i1.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/emj.v5i1.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地区国内生产总值(GRDP)支出描述了一个地区领土边界内生产过程的最终结果。了解GRDP费用可以描述福利经济学水平,发展政策制定、税收和进出口研究。在估计下一年的费用生产总值时,需要有一种系统的计算方法,其中一种方法就是预测。一些研究表明,趋势矩法和朴素法比其他方法具有更高的精度。该方法可用于长期预测,且不要求数据量为奇数或偶数。通过MAPE计算,对该方法进行了比较,得到了精度最高的最佳方法之一。MAPE越小,预测精度越高。两种方法的比较结果表明,基于MAPE标准的朴素法是最好的方法,准确率为0.976%。数据预测结果显示,2021年和2022年英国gdp将下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the Trend Moment and Naive Methods in Forecasting Gross Regional Domestic Product in Blitar Regency
Gross Regional Domestic Product (GRDP) expenditure describes the final result of the production process within a region's territorial boundaries. Knowing GRDP expenses can describe the level of welfare economics, develop policy formulation, taxation, and export-import study. In estimating the GRDP of expenses in the following year, it is necessary to have a method of calculating systematically, one of which is forecasting. Some research showed that trend moment method and naive method produce higher accuracy than other methods. This method can be used in long-term forecasting and does not require the amount of data to be odd or even. The method is compared to get one of the best methods and has the highest accuracy value using MAPE calculation. The smaller MAPE, the better the forecasting accuracy. Comparing the two methods shows that the Naive method is the best method based on the MAPE criteria with an accuracy of 0.976 %. The result of data forecasting shows a decrease in GRDP Blitar Regency year 2021 and 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of the Spread of Malaria in the Bangka Belitung Islands Province Using the SEIR Method Analisis Dinamik Model Predator-prey dengan Perilaku Anti Predator serta Efek Allee pada Prey Modifikasi Algoritma Edmonds Karp untuk Menentukan Aliran Maksimum Pada Jaringan Distribusi Air PDAM (Studi Kasus Jaringan Telaga Sari PDAM Giri Menang Mataram) Modelling the Recovery of Malaria Patients in West Lombok District Using Cox Regression Model Regresi Cox Untuk Data Masa Studi (Studi Kasus: Data Masa Studi Mahasiswa Fakultas Teknik Universitas Bangka Belitung)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1