探索在Apache Mesos托管云中使用功率作为资源分配的第一类参数的潜力

Pradyumna Kaushik, S. Raghavendra, M. Govindaraju, Devesh Tiwari
{"title":"探索在Apache Mesos托管云中使用功率作为资源分配的第一类参数的潜力","authors":"Pradyumna Kaushik, S. Raghavendra, M. Govindaraju, Devesh Tiwari","doi":"10.1109/UCC48980.2020.00040","DOIUrl":null,"url":null,"abstract":"We propose a resource allocation policy that uses (a) Power as a first class parameter as an indicator of the computational intensity of a task and its potential impact on peak power draw, and (b) Power Tolerance as an indicator of a task’s sensitivity towards degradation of performance as a result of resource contention. Through experimentation and analysis, we present coarse-grained and fine-grained Power Tolerance assignment methods that can be employed to make smarter peak power performance trade-offs. Our experiments show that (a) cloud operators can benefit from a uniform workload-wide setting of Power Tolerance to achieve significant reduction in peak power consumption, (b) fine-grained Power Tolerance assignment methods show potential in making smarter peak power and performance trade-offs.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring the Potential of using Power as a First Class Parameter for Resource Allocation in Apache Mesos Managed Clouds\",\"authors\":\"Pradyumna Kaushik, S. Raghavendra, M. Govindaraju, Devesh Tiwari\",\"doi\":\"10.1109/UCC48980.2020.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a resource allocation policy that uses (a) Power as a first class parameter as an indicator of the computational intensity of a task and its potential impact on peak power draw, and (b) Power Tolerance as an indicator of a task’s sensitivity towards degradation of performance as a result of resource contention. Through experimentation and analysis, we present coarse-grained and fine-grained Power Tolerance assignment methods that can be employed to make smarter peak power performance trade-offs. Our experiments show that (a) cloud operators can benefit from a uniform workload-wide setting of Power Tolerance to achieve significant reduction in peak power consumption, (b) fine-grained Power Tolerance assignment methods show potential in making smarter peak power and performance trade-offs.\",\"PeriodicalId\":125849,\"journal\":{\"name\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC48980.2020.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种资源分配策略,该策略使用(a)功率作为第一类参数,作为任务的计算强度及其对峰值功耗的潜在影响的指标,以及(b)功率容差作为任务对由于资源争用而导致的性能下降的敏感性的指标。通过实验和分析,我们提出了粗粒度和细粒度的功率容限分配方法,可以用来做出更智能的峰值功率性能权衡。我们的实验表明:(a)云运营商可以从统一的工作负载范围内的功率容限设置中受益,从而显著降低峰值功耗;(b)细粒度的功率容限分配方法显示出更智能的峰值功率和性能权衡的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Potential of using Power as a First Class Parameter for Resource Allocation in Apache Mesos Managed Clouds
We propose a resource allocation policy that uses (a) Power as a first class parameter as an indicator of the computational intensity of a task and its potential impact on peak power draw, and (b) Power Tolerance as an indicator of a task’s sensitivity towards degradation of performance as a result of resource contention. Through experimentation and analysis, we present coarse-grained and fine-grained Power Tolerance assignment methods that can be employed to make smarter peak power performance trade-offs. Our experiments show that (a) cloud operators can benefit from a uniform workload-wide setting of Power Tolerance to achieve significant reduction in peak power consumption, (b) fine-grained Power Tolerance assignment methods show potential in making smarter peak power and performance trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain Mobility Solution for Charging Transactions of Electrical Vehicles Open-source Serverless Architectures: an Evaluation of Apache OpenWhisk Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks Message from the B2D2LM 2020 Workshop Chairs Dynamic Network Slicing in Fog Computing for Mobile Users in MobFogSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1