通信系统的深度展开:综述和一些新方向

Alexios Balatsoukas-Stimming, Christoph Studer
{"title":"通信系统的深度展开:综述和一些新方向","authors":"Alexios Balatsoukas-Stimming, Christoph Studer","doi":"10.1109/SiPS47522.2019.9020494","DOIUrl":null,"url":null,"abstract":"Deep unfolding is a method of growing popularity that fuses iterative optimization algorithms with tools from neural networks to efficiently solve a range of tasks in machine learning, signal and image processing, and communication systems. This survey summarizes the principle of deep unfolding and discusses its recent use for communication systems with focus on detection and precoding in multi-antenna (MIMO) wireless systems and belief propagation decoding of error-correcting codes. To showcase the efficacy and generality of deep unfolding, we describe a range of other tasks relevant to communication systems that can be solved using this emerging paradigm. We conclude the survey by outlining a list of open research problems and future research directions.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Deep Unfolding for Communications Systems: A Survey and Some New Directions\",\"authors\":\"Alexios Balatsoukas-Stimming, Christoph Studer\",\"doi\":\"10.1109/SiPS47522.2019.9020494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep unfolding is a method of growing popularity that fuses iterative optimization algorithms with tools from neural networks to efficiently solve a range of tasks in machine learning, signal and image processing, and communication systems. This survey summarizes the principle of deep unfolding and discusses its recent use for communication systems with focus on detection and precoding in multi-antenna (MIMO) wireless systems and belief propagation decoding of error-correcting codes. To showcase the efficacy and generality of deep unfolding, we describe a range of other tasks relevant to communication systems that can be solved using this emerging paradigm. We conclude the survey by outlining a list of open research problems and future research directions.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

摘要

深度展开是一种日益流行的方法,它将迭代优化算法与神经网络工具融合在一起,有效地解决机器学习、信号和图像处理以及通信系统中的一系列任务。本文综述了深度展开的原理,并讨论了深度展开在通信系统中的应用,重点讨论了多天线(MIMO)无线系统中的检测和预编码以及纠错码的信念传播译码。为了展示深度展开的有效性和普遍性,我们描述了一系列与通信系统相关的其他任务,这些任务可以使用这种新兴的范式来解决。最后,我们列出了一些有待解决的问题和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Unfolding for Communications Systems: A Survey and Some New Directions
Deep unfolding is a method of growing popularity that fuses iterative optimization algorithms with tools from neural networks to efficiently solve a range of tasks in machine learning, signal and image processing, and communication systems. This survey summarizes the principle of deep unfolding and discusses its recent use for communication systems with focus on detection and precoding in multi-antenna (MIMO) wireless systems and belief propagation decoding of error-correcting codes. To showcase the efficacy and generality of deep unfolding, we describe a range of other tasks relevant to communication systems that can be solved using this emerging paradigm. We conclude the survey by outlining a list of open research problems and future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1