Christos Sagonas, Yannis Panagakis, S. Zafeiriou, M. Pantic
{"title":"RAPS:鲁棒且高效的个人化变形模型自动建构","authors":"Christos Sagonas, Yannis Panagakis, S. Zafeiriou, M. Pantic","doi":"10.1109/CVPR.2014.231","DOIUrl":null,"url":null,"abstract":"The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models\",\"authors\":\"Christos Sagonas, Yannis Panagakis, S. Zafeiriou, M. Pantic\",\"doi\":\"10.1109/CVPR.2014.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models
The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time.