基于顺序几何规划的产量约束数字电路尺寸

Y. Ben, L. Ghaoui, K. Poolla, C. Spanos
{"title":"基于顺序几何规划的产量约束数字电路尺寸","authors":"Y. Ben, L. Ghaoui, K. Poolla, C. Spanos","doi":"10.1109/ISQED.2010.5450391","DOIUrl":null,"url":null,"abstract":"Circuit design under process variation can be formulated mathematically as a robust optimization problem with a yield constraint. Existing methods force designers to either resort to overly simplified circuit performance model, or rely on simplistic variability assumptions. On the other hand, accurate yield estimation must incorporate a sophisticated variability model that recognizes both systematic and random components at various levels of hierarchy. Unfortunately, such models are not compatible with existing optimization solutions. To solve the problem, we propose the sequential geometric programming method, which consists of iterative usage of geometric programming and importance sampling, and is capable of handling an arbitrary variability model. The proposed method is shown to be able to achieve the desired yield without overdesign, and solve circuits with thousands of gates within reasonable amount of time.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Yield-constrained digital circuit sizing via sequential geometric programming\",\"authors\":\"Y. Ben, L. Ghaoui, K. Poolla, C. Spanos\",\"doi\":\"10.1109/ISQED.2010.5450391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circuit design under process variation can be formulated mathematically as a robust optimization problem with a yield constraint. Existing methods force designers to either resort to overly simplified circuit performance model, or rely on simplistic variability assumptions. On the other hand, accurate yield estimation must incorporate a sophisticated variability model that recognizes both systematic and random components at various levels of hierarchy. Unfortunately, such models are not compatible with existing optimization solutions. To solve the problem, we propose the sequential geometric programming method, which consists of iterative usage of geometric programming and importance sampling, and is capable of handling an arbitrary variability model. The proposed method is shown to be able to achieve the desired yield without overdesign, and solve circuits with thousands of gates within reasonable amount of time.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

工艺变化下的电路设计可以用数学形式表述为一个具有良率约束的鲁棒优化问题。现有的方法迫使设计者要么求助于过于简化的电路性能模型,要么依赖于简单的变异性假设。另一方面,准确的产量估计必须包含一个复杂的变异性模型,该模型可以识别不同层次上的系统和随机成分。不幸的是,这些模型与现有的优化解决方案不兼容。为了解决这一问题,我们提出了序列几何规划方法,该方法由几何规划和重要抽样的迭代应用组成,能够处理任意变异性模型。所提出的方法被证明能够在不过度设计的情况下达到预期的良率,并在合理的时间内解决具有数千个门的电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yield-constrained digital circuit sizing via sequential geometric programming
Circuit design under process variation can be formulated mathematically as a robust optimization problem with a yield constraint. Existing methods force designers to either resort to overly simplified circuit performance model, or rely on simplistic variability assumptions. On the other hand, accurate yield estimation must incorporate a sophisticated variability model that recognizes both systematic and random components at various levels of hierarchy. Unfortunately, such models are not compatible with existing optimization solutions. To solve the problem, we propose the sequential geometric programming method, which consists of iterative usage of geometric programming and importance sampling, and is capable of handling an arbitrary variability model. The proposed method is shown to be able to achieve the desired yield without overdesign, and solve circuits with thousands of gates within reasonable amount of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1