广义无线对抗性深度学习

Francesco Restuccia, Salvatore D’oro, Amani Al-Shawabka, Bruno Costa Rendon, K. Chowdhury, Stratis Ioannidis, T. Melodia
{"title":"广义无线对抗性深度学习","authors":"Francesco Restuccia, Salvatore D’oro, Amani Al-Shawabka, Bruno Costa Rendon, K. Chowdhury, Stratis Ioannidis, T. Melodia","doi":"10.1145/3395352.3402625","DOIUrl":null,"url":null,"abstract":"Deep learning techniques can classify spectrum phenomena (e.g., waveform modulation) with accuracy levels that were once thought impossible. Although we have recently seen many advances in this field, extensive work in computer vision has demonstrated that an adversary can \"crack\" a classifier by designing inputs that \"steer\" the classifier away from the ground truth. This paper advances the state of the art by proposing a generalized analysis and evaluation of adversarial machine learning (AML) attacks to deep learning systems in the wireless domain. We postulate a series of adversarial attacks, and formulate a Generalized Wireless Adversarial Machine Learning Problem (GWAP) where we analyze the combined effect of the wireless channel and the adversarial waveform on the efficacy of the attacks. We extensively evaluate the performance of our attacks on a state-of-the-art 1,000-device radio fingerprinting dataset, and a 24-class modulation dataset. Results show that our algorithms can decrease the classifiers' accuracy up to 3x while keeping the waveform distortion to a minimum.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"29 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generalized wireless adversarial deep learning\",\"authors\":\"Francesco Restuccia, Salvatore D’oro, Amani Al-Shawabka, Bruno Costa Rendon, K. Chowdhury, Stratis Ioannidis, T. Melodia\",\"doi\":\"10.1145/3395352.3402625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning techniques can classify spectrum phenomena (e.g., waveform modulation) with accuracy levels that were once thought impossible. Although we have recently seen many advances in this field, extensive work in computer vision has demonstrated that an adversary can \\\"crack\\\" a classifier by designing inputs that \\\"steer\\\" the classifier away from the ground truth. This paper advances the state of the art by proposing a generalized analysis and evaluation of adversarial machine learning (AML) attacks to deep learning systems in the wireless domain. We postulate a series of adversarial attacks, and formulate a Generalized Wireless Adversarial Machine Learning Problem (GWAP) where we analyze the combined effect of the wireless channel and the adversarial waveform on the efficacy of the attacks. We extensively evaluate the performance of our attacks on a state-of-the-art 1,000-device radio fingerprinting dataset, and a 24-class modulation dataset. Results show that our algorithms can decrease the classifiers' accuracy up to 3x while keeping the waveform distortion to a minimum.\",\"PeriodicalId\":370816,\"journal\":{\"name\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"29 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395352.3402625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

深度学习技术可以对频谱现象(例如,波形调制)进行分类,其精确度一度被认为是不可能的。尽管我们最近在这一领域看到了许多进展,但计算机视觉领域的大量工作已经表明,对手可以通过设计“引导”分类器偏离基本事实的输入来“破解”分类器。本文提出了一种针对无线领域深度学习系统的对抗性机器学习(AML)攻击的广义分析和评估,从而提高了目前的技术水平。我们假设了一系列对抗性攻击,并制定了一个广义无线对抗性机器学习问题(GWAP),其中我们分析了无线信道和对抗性波形对攻击有效性的综合影响。我们在最先进的1000个设备的无线电指纹数据集和24类调制数据集上广泛评估了我们的攻击性能。结果表明,我们的算法可以将分类器的准确率降低3倍,同时保持波形失真最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized wireless adversarial deep learning
Deep learning techniques can classify spectrum phenomena (e.g., waveform modulation) with accuracy levels that were once thought impossible. Although we have recently seen many advances in this field, extensive work in computer vision has demonstrated that an adversary can "crack" a classifier by designing inputs that "steer" the classifier away from the ground truth. This paper advances the state of the art by proposing a generalized analysis and evaluation of adversarial machine learning (AML) attacks to deep learning systems in the wireless domain. We postulate a series of adversarial attacks, and formulate a Generalized Wireless Adversarial Machine Learning Problem (GWAP) where we analyze the combined effect of the wireless channel and the adversarial waveform on the efficacy of the attacks. We extensively evaluate the performance of our attacks on a state-of-the-art 1,000-device radio fingerprinting dataset, and a 24-class modulation dataset. Results show that our algorithms can decrease the classifiers' accuracy up to 3x while keeping the waveform distortion to a minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1