目录协助:学习企业列表的用户公式

C. Popovici, M. Andorno, P. Laface, L. Fissore, M. Nigra, C. Vair
{"title":"目录协助:学习企业列表的用户公式","authors":"C. Popovici, M. Andorno, P. Laface, L. Fissore, M. Nigra, C. Vair","doi":"10.1109/ASRU.2001.1034634","DOIUrl":null,"url":null,"abstract":"One of the main problems in automatic directory assistance (DA) for business listings is that customers formulate their requests for the same listing with a great variability. We show that an automatic approach allows the detection, from field data, of user formulations that were not foreseen by the designers, and that they can be added, as variants, to the denominations already included in the system to reduce its failures.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Directory assistance: learning user formulations for business listings\",\"authors\":\"C. Popovici, M. Andorno, P. Laface, L. Fissore, M. Nigra, C. Vair\",\"doi\":\"10.1109/ASRU.2001.1034634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main problems in automatic directory assistance (DA) for business listings is that customers formulate their requests for the same listing with a great variability. We show that an automatic approach allows the detection, from field data, of user formulations that were not foreseen by the designers, and that they can be added, as variants, to the denominations already included in the system to reduce its failures.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于企业列表的自动目录帮助(DA)的一个主要问题是,客户对同一列表的请求具有很大的可变性。我们表明,自动方法允许从现场数据中检测设计者没有预见到的用户配方,并且可以将它们作为变体添加到系统中已经包含的面额中,以减少其故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Directory assistance: learning user formulations for business listings
One of the main problems in automatic directory assistance (DA) for business listings is that customers formulate their requests for the same listing with a great variability. We show that an automatic approach allows the detection, from field data, of user formulations that were not foreseen by the designers, and that they can be added, as variants, to the denominations already included in the system to reduce its failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Example-based query generation for spontaneous speech Multilingual acoustic models for the recognition of non-native speech A comparative study of model-based adaptation techniques for a compact speech recognizer Trend tying in the segmental-feature HMM Estimated rank pruning and Java-based speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1