{"title":"论NBTI中“永久性”退化的性质","authors":"D. Nguyen, C. Kouhestani, K. Kambour, R. Devine","doi":"10.1109/IIRW.2013.6804181","DOIUrl":null,"url":null,"abstract":"This paper reports new high temperature measurements of Negative Bias Temperature Instability induced interface states in both NMOS and PMOS devices. Evidence of annealing of the interface states, previously thought to be “permanent”, is presented for measurements including a methodology which allows the direct measurement of the time dependent growth/recovery of the interface state component.","PeriodicalId":287904,"journal":{"name":"2013 IEEE International Integrated Reliability Workshop Final Report","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the nature of “permanent” degradation in NBTI\",\"authors\":\"D. Nguyen, C. Kouhestani, K. Kambour, R. Devine\",\"doi\":\"10.1109/IIRW.2013.6804181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports new high temperature measurements of Negative Bias Temperature Instability induced interface states in both NMOS and PMOS devices. Evidence of annealing of the interface states, previously thought to be “permanent”, is presented for measurements including a methodology which allows the direct measurement of the time dependent growth/recovery of the interface state component.\",\"PeriodicalId\":287904,\"journal\":{\"name\":\"2013 IEEE International Integrated Reliability Workshop Final Report\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Integrated Reliability Workshop Final Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW.2013.6804181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Integrated Reliability Workshop Final Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2013.6804181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper reports new high temperature measurements of Negative Bias Temperature Instability induced interface states in both NMOS and PMOS devices. Evidence of annealing of the interface states, previously thought to be “permanent”, is presented for measurements including a methodology which allows the direct measurement of the time dependent growth/recovery of the interface state component.