GaN HEMT的可靠性:GaN/AlGaN/AlN/GaN HEMT的电流降解

B. Padmanabhan, D. Vasileska, S. Goodnick
{"title":"GaN HEMT的可靠性:GaN/AlGaN/AlN/GaN HEMT的电流降解","authors":"B. Padmanabhan, D. Vasileska, S. Goodnick","doi":"10.1109/IWCE.2012.6242851","DOIUrl":null,"url":null,"abstract":"Electrical reliability of the AlGaN/GaN material system in both the on and off state regimes is a fundamental problem to be solved before the widespread use of this technology. The two major reliability concerns in this technology is electric field induced strain degradation also known as electromechanical coupling and current collapse mechanism. In the present work, an electro thermal particle based device simulator has been developed to address these two issues. It consists of a Monte Carlo-Poisson solver that is self-consistently coupled with a thermal solver for both the acoustic and the optical phonon baths. This simulator has been used to understand the physics behind these mechanisms that lead to reliability concerns.","PeriodicalId":375453,"journal":{"name":"2012 15th International Workshop on Computational Electronics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reliability of GaN HEMTs: Current degradation in GaN/AlGaN/AlN/GaN HEMT\",\"authors\":\"B. Padmanabhan, D. Vasileska, S. Goodnick\",\"doi\":\"10.1109/IWCE.2012.6242851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical reliability of the AlGaN/GaN material system in both the on and off state regimes is a fundamental problem to be solved before the widespread use of this technology. The two major reliability concerns in this technology is electric field induced strain degradation also known as electromechanical coupling and current collapse mechanism. In the present work, an electro thermal particle based device simulator has been developed to address these two issues. It consists of a Monte Carlo-Poisson solver that is self-consistently coupled with a thermal solver for both the acoustic and the optical phonon baths. This simulator has been used to understand the physics behind these mechanisms that lead to reliability concerns.\",\"PeriodicalId\":375453,\"journal\":{\"name\":\"2012 15th International Workshop on Computational Electronics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2012.6242851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2012.6242851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在该技术广泛应用之前,AlGaN/GaN材料系统在通断状态下的电气可靠性是一个需要解决的基本问题。该技术的两个主要可靠性问题是电场诱发应变退化(也称为机电耦合)和电流崩溃机制。为了解决这两个问题,本文开发了一种基于电热粒子的器件模拟器。它由一个蒙特卡罗-泊松解算器组成,该解算器与声学和光学声子槽的热解算器自洽耦合。这个模拟器已经被用来理解这些导致可靠性问题的机制背后的物理原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of GaN HEMTs: Current degradation in GaN/AlGaN/AlN/GaN HEMT
Electrical reliability of the AlGaN/GaN material system in both the on and off state regimes is a fundamental problem to be solved before the widespread use of this technology. The two major reliability concerns in this technology is electric field induced strain degradation also known as electromechanical coupling and current collapse mechanism. In the present work, an electro thermal particle based device simulator has been developed to address these two issues. It consists of a Monte Carlo-Poisson solver that is self-consistently coupled with a thermal solver for both the acoustic and the optical phonon baths. This simulator has been used to understand the physics behind these mechanisms that lead to reliability concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electron-hole transport asymmetry in boron-doped graphene field effect transistors Thermoelectric properties of disordered graphene antidot devices Design of a systolic pattern matcher for Nanomagnet Logic Transport behaviors in graphene field effect transistors on boron nitride substrate Graphene-based FET structure: Modeling FET characteristics for an aptamer-based analyte sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1