风能开关磁阻发电机的自整定模糊逻辑控制

Kiwoo Park, Zhe Chen
{"title":"风能开关磁阻发电机的自整定模糊逻辑控制","authors":"Kiwoo Park, Zhe Chen","doi":"10.1109/PEDG.2012.6254026","DOIUrl":null,"url":null,"abstract":"This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition, its flux linkage, inductance, and torque are highly coupled with the rotor position and phase current. All these features make the application of traditional controllers to the SRG difficult and unsatisfactory. The proposed controller consists of three main parts: turn-on and turn-off angle determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which has better adaptability than a traditional controller so that it provides better performance over a wide range of operating conditions. The current controller is basically a hysteresis controller which controls the phase current in accordance with the turn-on and turn-off angles. Simulation results are shown to verify the effectiveness of the proposed controller.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications\",\"authors\":\"Kiwoo Park, Zhe Chen\",\"doi\":\"10.1109/PEDG.2012.6254026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition, its flux linkage, inductance, and torque are highly coupled with the rotor position and phase current. All these features make the application of traditional controllers to the SRG difficult and unsatisfactory. The proposed controller consists of three main parts: turn-on and turn-off angle determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which has better adaptability than a traditional controller so that it provides better performance over a wide range of operating conditions. The current controller is basically a hysteresis controller which controls the phase current in accordance with the turn-on and turn-off angles. Simulation results are shown to verify the effectiveness of the proposed controller.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于自整定模糊逻辑控制(FLC)的新型风力发电开关磁阻发电机(SRG)转速控制器。由于其双凸极结构和磁饱和特性,SRG具有强非线性的固有特性。此外,其磁链、电感和转矩与转子位置和相电流高度耦合。这些特点使得传统控制器在SRG中的应用变得困难和不理想。所提出的控制器由三个主要部分组成:开关角确定、自整定FLC速度控制和电流控制器。通断角的确定,顾名思义就是控制电源开关的通断角,提高SRG的效率和转矩调节。自整定FLC是一种比传统控制器具有更强适应性的速度控制器,可以在更大范围的工作条件下提供更好的性能。电流控制器基本上是一个迟滞控制器,它根据通断角控制相电流。仿真结果验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications
This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition, its flux linkage, inductance, and torque are highly coupled with the rotor position and phase current. All these features make the application of traditional controllers to the SRG difficult and unsatisfactory. The proposed controller consists of three main parts: turn-on and turn-off angle determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which has better adaptability than a traditional controller so that it provides better performance over a wide range of operating conditions. The current controller is basically a hysteresis controller which controls the phase current in accordance with the turn-on and turn-off angles. Simulation results are shown to verify the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart — STATCOM control strategy implementation in wind power plants Common DC link in residential LV network to improve the penetration level of Small-Scale Embedded Generators Research on the reactive power optimization of distribution network including DG Use of petri nets for load sharing control in distributed generation applications Mega data center architecture under Smart Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1