Falda Junisman Zebua, Ribka Permatasari Br Manalu, Marlince Nababan
{"title":"PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN PERBANDINGAN ALGORITMA C5.0 DENGAN REGRESSION LINEAR","authors":"Falda Junisman Zebua, Ribka Permatasari Br Manalu, Marlince Nababan","doi":"10.37600/tekinkom.v4i2.400","DOIUrl":null,"url":null,"abstract":"Technological advances supported by human knowledge have a very good influence on data and information storage technology, including in predicting student graduation (Graduation Prediction) on time, by applying several existing algorithms. In this study, researchers used the C5.0 Algorithm and Linear Regression. The concept of the research is to compare two algorithms, namely C5.0 and Linear Regression to the case of graduating students on time. Based on the length of study, students who graduated correctly amounted to 651 (91%) with a male gender of 427 students and a female gender of 224 students while those who did not pass (late) correctly amounted to 64 (9%) with a male gender totaling 53 students and female gender totaling 11 students from 2017-2020. Comparison results The R2 score from the C5.0 algorithm reached 96.85% (training) and 93.72% (testing) while the R2 score from the Linear Regression reached 33.31% (training) and 40.30% (testing).","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v4i2.400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由人类知识支持的技术进步对数据和信息存储技术产生了非常好的影响,包括通过应用几种现有算法来预测学生按时毕业(毕业预测)。在本研究中,研究者使用了C5.0算法和线性回归。本研究的概念是比较C5.0和线性回归两种算法在学生按时毕业的情况下。根据学习时间,2017-2020年,正确毕业的学生为651人(91%),其中男427人,女224人,不及格(迟到)的学生为64人(9%),男53人,女11人。对比结果C5.0算法的R2得分达到96.85%(训练)和93.72%(测试),线性回归的R2得分达到33.31%(训练)和40.30%(测试)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN PERBANDINGAN ALGORITMA C5.0 DENGAN REGRESSION LINEAR
Technological advances supported by human knowledge have a very good influence on data and information storage technology, including in predicting student graduation (Graduation Prediction) on time, by applying several existing algorithms. In this study, researchers used the C5.0 Algorithm and Linear Regression. The concept of the research is to compare two algorithms, namely C5.0 and Linear Regression to the case of graduating students on time. Based on the length of study, students who graduated correctly amounted to 651 (91%) with a male gender of 427 students and a female gender of 224 students while those who did not pass (late) correctly amounted to 64 (9%) with a male gender totaling 53 students and female gender totaling 11 students from 2017-2020. Comparison results The R2 score from the C5.0 algorithm reached 96.85% (training) and 93.72% (testing) while the R2 score from the Linear Regression reached 33.31% (training) and 40.30% (testing).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI USABILITY PADA APLIKASI IMMERSIVE STORY TELLING SATUA I BELOG IMPLEMENTASI TEKNOLOGI VIRTUAL DALAM VISUALISASI PENGENALAN KAMPUS MENGGUNAKAN WEBVR PENGEBANGAN MEDIA INTERAKTIF BERORIENTASI HOTS (HIGHER ORDER THINGKING SKILLS) PADA MATAPELAJARAN BILOGI BERBASIS ANDROID SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN OBYEK WISATA TERBAIK DI KABUPATEN SRAGEN DENGAN METODE WEIGHTED PRODUCT DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1